Trong không gian \[Oxyz\], vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\], biết \[\overrightarrow a = \left( { - 1; - 2; - 2} \right)\], \[\overrightarrow b = \left( { - 1;0; - 1} \right)\]là cặp vectơ chỉ phương của \[\left( P \right)\]?
A. \[\overrightarrow n = \left( {2;1;2} \right).\]
B. \[\overrightarrow n = \left( {2; - 1; - 2} \right).\]
C. \[\overrightarrow n = \left( {2;1; - 2} \right).\]
D. \[\overrightarrow n = \left( { - 2;1; - 2} \right).\]
Đáp án đúng là: C
Ta có vectơ pháp tuyến \[\overrightarrow n \] của mặt phẳng \[\left( P \right)\] bằng
\[\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&{ - 2}\\0&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&{ - 1}\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 1}&0\end{array}} \right|} \right) = \left( {2;1; - 2} \right).\]
Vậy vectơ pháp tuyến của mặt phẳng là \[\overrightarrow n = \left( {2;1; - 2} \right).\]
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1\]. Điểm nào sau đây không thuộc mặt phẳng \[\left( P \right)\]?
Trong không gian \[Oxyz\], cho điểm \[M\left( { - 1;2;0} \right)\] và mặt phẳng \[\left( P \right)\]: \[2x - 2y + z + 1 = 0\]. Khoảng cách từ điểm \[M\] đến mặt phẳng \[\left( P \right)\] là
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( \alpha \right):2x + y + z + 1 = 0\]. Vectơ pháp tuyến của mặt phẳng là
Trong không gian \[Oxyz\], cho điểm \[A\left( {3; - 2; - 2} \right)\], \[B\left( {3;2;0} \right)\], \[C\left( {0;2;1} \right)\]. Phương trình mặt phẳng \[\left( {ABC} \right)\] là
Trong không gian \[Oxyz\], cho \[A\left( {0;1;1} \right)\], \[B\left( {1;2;3} \right)\]. Viết phương trình mặt phẳng \[\left( P \right)\] đi qua \[A\] và vuông góc với đường thẳng \[AB\].
Cho hai mặt phẳng \[\left( P \right):3x - 2y + 2z + 7 = 0\] và \[\left( Q \right):5x - 4y + 3z + 1 = 0\]. Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả \[\left( P \right)\] và \[\left( Q \right)\] là
Trong không gian \[Oxyz\], mặt phẳng đi qua điểm \[M\left( {1;3; - 2} \right)\] và song song với mặt phẳng \[\left( P \right):2x - y + 3z + 4 = 0\] là
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - y + 2z - 4 = 0\]. Gọi \[H\] là hình chiếu vuông góc của \[M\left( {3;1; - 2} \right)\] lên mặt phẳng \[\left( P \right)\]. Độ dài đoạn thẳng \[MH\] là
III. Vận dụng
Trong không gian với hệ tọa độ \[Oxyz\], cho hai mặt phẳng \[\left( P \right):2x + my + 3z - 5 = 0\] và \[\left( Q \right):nx - 8y - 6z + 2 = 0\] với \[m,n \in \mathbb{R}\]. Xác định \[m,n\] để \[\left( P \right)\] song song với \[\left( Q \right)\].
Trong không gian với hệ tọa độ \[Oxyz\], cho các điểm \[A\left( {0;1;2} \right),B\left( {2; - 2;0} \right),\] \[C\left( { - 2;0;1} \right)\]. Mặt phẳng \[\left( P \right)\] đi qua \[A\], trực tâm \[H\] của tam giác \[ABC\] và vuông góc với mặt phẳng \[\left( {ABC} \right)\] có phương trình là
I. Nhận biết
Cho hình lập phương \[ABCD.A'B'C'D'\]. Vectơ nào là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\]?
Trong không gian \[Oxyz\], mặt phẳng \[\left( P \right):x + y + z - 3 = 0\] đi qua điểm nào dưới đây?
II. Thông hiểu
Trong không gian \[Oxyz\], phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {2;1;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {2;3; - 1} \right)\] là
Trong không gian \[Oxyz\], cho điểm \[M\left( {1;2;3} \right)\]. Gọi \[A,B,C\] lần lượt là hình chiếu vuông góc của điểm \[M\] lên các trục \[Ox,Oy,Oz\]. Phương trình mặt phẳng \[\left( {ABC} \right)\] là
Cho hai mặt phẳng \[\left( P \right):2x - y + 2z - 5 = 0\]; \[\left( Q \right):4x - 2y + 4z + 1 - m = 0\] và điểm \[M\left( {2;1;5} \right)\]. Khi đó:
a) Khoảng cách từ \[M\] đến mặt phẳng \[\left( P \right)\] bằng \[\frac{8}{3}.\]
b) Với \[m = 0\] thì khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng \[\frac{9}{2}.\]
c) Với \[m = 3\] thì khoảng cách giữa mặt phẳng \[\left( P \right)\] và mặt phẳng \[\left( Q \right)\] bằng \[3.\]
d) Có hai giá trị của \[m\] để khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng 1. Khi đó tổng của tất cả các giá trị \[m\] bằng 5.
Số mệnh đề đúng trong các mệnh đề trên là: