Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

03/11/2024 4

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm \[t\] giây (coi \[t = 0\] là thời điểm viên đạn được bắn lên trên), vận tốc của nó được cho bởi \[v\left( t \right) = 25 - 9,8t{\rm{ }}\left( {m/s} \right)\]. Độ cao của viên đạn (tính từ mặt đất lên) đạt giá trị lớn nhất là

A. \[\frac{{125}}{{49}}.\]

B. \[\frac{{1125}}{{98}}.\]

C. \[\frac{{2375}}{{392}}.\]

D. \[\frac{{3125}}{{98}}.\]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có phương trình độ cao của viên đạn là:

\[h\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {25 - 9,8t} \right)} dt = 25t - 4,9{t^2} + C.\]

Do coi \[t = 0\] là thời điểm viên đạn được bắn lên trên nên C = 0.

Suy ra \[h\left( t \right) = 25t - 4,9{t^2} = - 4,9{\left( {t - \frac{{125}}{{49}}} \right)^2} + \frac{{3125}}{{98}}\].

Nhận thấy \[ - 4,9{\left( {t - \frac{{125}}{{49}}} \right)^2} + \frac{{3125}}{{98}} \le \frac{{3125}}{{98}}\] do đó, độ cao của viên đạn đạt giá trị lớn nhất bằng \[\frac{{3125}}{{98}}\] khi \[t = \frac{{125}}{{49}}\].

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các mệnh đề dưới đây:

(I). \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]

(II). \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{6} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].

(III). \[F\left( x \right) = \frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C\] là nguyên hàm của hàm số

\[f\left( x \right) = \frac{{2{x^3}\sqrt x }}{7} - 2{x^2}\sqrt x + \frac{2}{3}x\sqrt x + C.\]

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 03/11/2024 10

Câu 2:

Cho hàm số \[f\left( x \right)\] thỏa mãn \[f'\left( x \right) = x + \sin x\] và \[f\left( 0 \right) = 1\]. Tìm \[f\left( x \right)\]

Xem đáp án » 03/11/2024 7

Câu 3:

Cho \[\int {f\left( x \right)dx = } F\left( x \right),{\rm{ }}\int {g\left( x \right)dx = G\left( x \right)} \]. Khi đó, \[I = \int {\left[ {2g\left( x \right) - f\left( x \right)} \right]dx} \] bằng

Xem đáp án » 03/11/2024 6

Câu 4:

Cho hai hàm số \[f\left( x \right),g\left( x \right)\] là hàm số liên tục, có \[F\left( x \right),G\left( x \right)\] lần lượt là nguyên hàm của \[f\left( x \right),g\left( x \right)\]. Xét các mệnh đề sau:

(I). \[F\left( x \right) + G\left( x \right)\] là một nguyên hàm của \[f\left( x \right) + g\left( x \right).\]

(II). \[kF\left( x \right)\] là một nguyên hàm của \[kf\left( x \right)\] với \[k \ne 0.\]

(III). \[F\left( x \right).G\left( x \right)\] là một nguyên hàm của \[f\left( x \right).g\left( x \right)\].

Các mệnh đề đúng là

Xem đáp án » 03/11/2024 6

Câu 5:

Hàm số \[F\left( x \right) = 2\sin x - 3\cos x + 1\] là một nguyên hàm của hàm số nào sau đây?

Xem đáp án » 03/11/2024 6

Câu 6:

I. Nhận biết

Hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên khoảng \[K\] nếu

Xem đáp án » 03/11/2024 5

Câu 7:

Nguyên hàm của hàm số \[f\left( x \right) = \cos x\] bằng

Xem đáp án » 03/11/2024 5

Câu 8:

II. Thông hiểu

Nguyên hàm của hàm số \[f\left( x \right) = \cos 3x\] bằng

Xem đáp án » 03/11/2024 5

Câu 9:

Nguyên hàm của hàm số \[f\left( x \right) = {x^2} - 3x + \frac{1}{x}\] là

Xem đáp án » 03/11/2024 5

Câu 10:

III. Vận dụng

Một vật chuyển động với gia tốc \[a\left( t \right) = 3{t^2} + t{\rm{ }}\left( {m/{s^2}} \right)\]. Biết rằng vận tốc ban đầu của vật là \[2{\rm{ }}\left( {m/s} \right).\] Vận tốc của vật đó sau hai giây là.

Xem đáp án » 03/11/2024 5

Câu 11:

Một vật chuyển động đều với vận tốc có phương trình \[v\left( t \right) = {t^2} - 2t + 1\], trong đó \[t\] được tính bằng giây, quãng đường \[s\left( t \right)\] được tính bằng mét. Khi đó:

a) Quãng đường đi được của vật sau 2 giây là \[\frac{2}{3}{\rm{ }}\left( m \right).\]

b) Quãng đường đi được của vật khi gia tốc bị triệt tiêu là \[\frac{1}{3}{\rm{ }}\left( m \right).\]

c) Quãng đường vật đi được trong khoảng từ 2 giây đến thời điểm mà vận tốc đạt \[9{\rm{ }}\left( {m/s} \right)\] là \[\frac{{26}}{3}{\rm{ }}\left( m \right).\]

d) Quãng đường vật đi được từ 0 giây đến thời gian mà gia tốc bằng \[{\rm{10 }}\left( {m/{s^2}} \right)\] là \[{\rm{44 }}\left( m \right)\].

Trong các khẳng định trên, có bao nhiêu khẳng định đúng?

Xem đáp án » 03/11/2024 5

Câu 12:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = 12x + 2\] với mọi \[x \in \mathbb{R}\] và \[f\left( 1 \right) = 3.\] Biết \[F\left( x \right)\] là nguyên hàm của \[f\left( x \right)\] thỏa mãn \[F\left( 0 \right) = 2\]. Tính giá trị của \[F\left( 1 \right).\]

Xem đáp án » 03/11/2024 5

Câu 13:

\[\int {{x^5}dx} \] bằng

Xem đáp án » 03/11/2024 4

Câu 14:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {e^{3x}}\left( {1 - 3{e^{ - 5x}}} \right)\]

Xem đáp án » 03/11/2024 4

Câu 15:

Họ nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{{x^2}}} - {x^2} - \frac{1}{3}\] là

Xem đáp án » 03/11/2024 4

Câu hỏi mới nhất

Xem thêm »
Xem thêm »