Cho A, B, C là các điểm biểu diễn các số phức thỏa mãn . Tìm phát biểu sai:
A. Tam giác ABC đều
B. Tam giác ABC có trọng tâm là O(0;0)
C. Tam giác ABC có tâm đường tròn ngoại tiếp là O(0;0)
D.
Đáp án D
Ta có
Vậy tọa độ các điểm biẻu diễn số phức z:
Tam giác ABC có AB=AC=BC=, trọng tâm O(0;0) cũng là tâm đường tròn ngoại tiếp tam giác và diện tích tam giác (Với a=)
Cho số phức z thỏa mãn: , với m là tham số thực thuộc .
Biết rằng tập hợp các điểm biểu diễn các số phức w=(3-4i)z-2i là một đường tròn.
Tính bán kính r nhỏ nhất của đường tròn đó.
Trong mặt phẳng tọa độ Oxy, cho điểm M là điểm biểu diễn của số phức z=4+2i.
Phương trình đường trung trực của đoạn OM là:
Cho các số phức z, w thỏa mãn .
Giá trị nhỏ nhất của là
Gọi và là hai nghiệm phức của phương trình z2 + 2z + 2 = 0.
Tính giá trị của biểu thức
Cho số phức z=a+bi với a, b là hai số thực khác 0. Một phương trình bậc hai với hệ số thực nhận làm nghiệm với mọi a, b là:
Trong số các số phức z thỏa mãn điều kiện gọi là số phức có mô đun lớn nhất. Khi đó là:
Trên mặt phẳng phức, cho điểm A biểu diễn số phức 3-2i, điểm B biểu diễn số phức -1+6i. Gọi M là trung điểm của AB. Khi đó điểm M biểu diễn số phức nào trong các số phức sau:
Gọi P là điểm biểu diễn của số phức a+bi trong mặt phẳng phức.
Cho các mệnh đề sau:
(1) Môđun của a+bi là bình phương khoảng cách OP.
(2) Nếu P là biểu diễn của số 3+4i thì khoảng cách từ O đến P bằng 7.
Chọn đáp án đúng:
Tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn là: