Tìm nguyên hàm của hàm số fx=1+tan2x2.
A. ∫fxdx=2tanx2+C
B. ∫fxdx=tanx2+C
C. ∫fxdx=12tanx2+C
D. ∫fxdx=-2tanx2+C
Chọn A
fx=1+tan2x2=1cos2x2
nên ∫dxcos2x2=2∫dx2cos2x2=2tanx2+C
Tìm nguyên hàm của hàm số fx=sin 2x
Tìm nguyên hàm của hàm số fx=sin3x.cosx.
Tìm nguyên hàm của hàm số f(x)=2x+1.
Tìm nguyên hàm của hàm số fx=2x.3-2x.
Tính ∫1sin2 x cos2 xdx là
Tìm nguyên hàm của hàm số sau ∫1x2-3x+2dx
Tìm nguyên hàm của hàm số f(x)=5-3x .
Tìm nguyên hàm của hàm số I=∫2x2+x+1x-1
Họ nguyên hàm của hàm sốfx=ex3+e-x là
Tìm nguyên hàm của hàm số f(x)=cos3x+π6 .
Biết một nguyên hàm của hàm số f(x)=11-3x+1 là hàm số F(x) thỏa mãn F(-1)=23. Khi đó F(x) là hàm số nào sau đây?
Tìm hàm số f(x) biết: f’(x) = 2x + 1 và f(1) = 5
Tìm nguyên hàm của hàm số fx=e4x-2.
Nguyên hàm của hàm số f(x)=12x-1 là
Tìm nguyên hàm của hàm số f(x)=13-x là
Trong không gian \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2}\]\[ + 2x - 4y - 6z + m - 3 = 0\]. Tìm số thực của tham số \[m\] để mặt phẳng \[\left( \beta \right):\]\[2x - y + 2z - 8 = 0\] cắt \[\left( S \right)\] theo một đường tròn có chu vi bằng \[8\pi .\]
Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và hình nón \[\left( H \right)\] có đỉnh \[A\left( {3;2; - 2} \right)\] và nhận \[AI\] là trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,N\]sao cho \[AM = 3AN\]. Viết phương trình mặt cầu đồng tâm với mặt cầu \[\left( S \right)\], tiếp xúc với các đường sinh của hình nón \[\left( H \right).\]
Trong không gian \[Oxyz\], cho ba điểm \[A\left( {1;0;0} \right),B\left( {0;0;3} \right),C\left( {0;2;0} \right)\]. Tập hợp các điểm \[M\] thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bao nhiêu?
Trong không gian \[Oxyz\], cho điểm \[H\left( {1;2; - 2} \right)\]. Mặt phẳng \[\left( \alpha \right)\] đi qua \[H\] và cắt các trục \[Ox,Oy,Oz\] tại \[A,B,C\] sao cho \[H\] là trực tâm của tam giác \[ABC\]. Viết phương trình mặt cầu tâm \[O\] và tiếp xúc với mặt phẳng \[\left( \alpha \right)\].
III. Vận dụng
Trong không gian \[Oxyz\], mặt cầu (S) đi qua điểm \[O\] và cắt các tia \[Ox,\]\[Oy,\]\[Oz\] lần lượt tại các điểm \[A,B,C\] khác \[O\] thỏa mãn tam giác \[ABC\] có trọng tâm là điểm \[G\left( { - 6; - 12;18} \right)\]. Tọa độ tâm của mặt cầu (S) là
Có tất cả bao nhiêu giá trị nguyên của \[m\] để phương trình \[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\] là phương trình mặt cầu?
Trong không gian \[Oxyz\], cho mặt cầu \[{x^2} + {y^2} + z{}^2 - 4x + 1 = 0\] có tâm và bán kính là
Cho mặt phẳng \[\left( P \right):2x + 2y + z - {m^2} + 4m - 5 = 0\] và mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\]. Giá trị của \[m\] để \[\left( P \right)\] tiếp xúc với \[\left( S \right)\] là
Trong không gian hệ trục \[Oxyz\], cho hai điểm \[A\left( {1;0; - 3} \right)\] và \[B\left( {3;2;1} \right).\] Phương trình mặt cầu đường kính \[AB\] là
Trong không gian \[Oxyz\], cho điểm \[I\left( {3;4;2} \right)\]. Phương trình mặt cầu tâm \[I\] tiếp xúc với trục \[Oz\] là