Cho z = 1 - i. Tìm căn bậc hai dạng lượng giác của z:
A.
B.
C.
D.
Chọn A.
Ta có có các căn bậc hai là:
Gọi z1; z2 là hai nghiệm phức của phương trình z2 - 4z + 9 = 0; gọi M và N lần lượt là các điểm biểu diễn z1; z2 trên mặt phẳng phức. Tính độ dài đoạn thẳng MN.
Tìm số nguyên x, y sao cho số phức z = x + yi thỏa mãn z3 = 18 + 26i
Tìm số thực x; y để hai số phức z1 = 9y2 – 4 – 10xi5 và z2 = 8y2 + 20i11 là liên hợp của nhau?
Tìm các số thực b,c để phương trình z2 + bz + c = 0 nhận z = 1+ i làm một nghiệm.
Trong C, phương trình (z2 + i) (z2 – 2iz – 1) = 0 có nghiệm là:
Gọi z là căn bậc hai có phần ảo âm của 33 - 56i. Phần thực của z là:
Cho số phức z thỏa . Viết z dưới dạng z = a + bi. Khi đó tổng a + b có giá trị bằng bao nhiêu?