Cho tam giác ABC nội tiếp đường trong (O). Qua O kẻ đường thẳng d. Quy tắc nào sau đây là một phép biến hình.
A. Quy tắc biến O thành giao điểm của d với các cạnh tam giác ABC
B. Quy tắc biến O thành giao điểm của d với đường tròn O
C. Quy tắc biến O thành hình chiếu của O trên các cạnh của tam giác ABC
D. Quy tắc biến O thành trực tâm H, biến H thành O và các điểm khác H và O thành chính nó.
Các quy tắc A, B, C đều biến O thành nhiều hơn một điểm nên đó không phải là phép biến hình. Quy tắc D biến O thành điểm H duy nhất nên đó là phép biến hình.
Chọn đáp án D
Cho tam giác ABC có trọng tâm G, Gọi D, E, F lần lượt là trung điểm của các cạnh BC, CA, AB. Mệnh đề nào sau đây là sai.
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto biến parabol (P): y = thành parabol (P’) có phương trình:
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto biến đường thẳng d: 12x – 36y + 101 = 0 thành đường thẳng d’ có phương trình:
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto biến đường thẳng d: x - 1 = 0 thành đường thẳng d’ có phương trình:
Cho tam giác ABC có trực tâm H, nội tiếp đường tròn (O), BC cố định, I là trung điểm của BC. Khi A di động trên (O) thì quỹ tích H là đường tròn (O’) là ảnh của O qua phép tịnh tiến theo vecto bằng:
Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến theo vecto biến M thành A thì bằng:
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto biến điểm A(0;2) thành A’ và biến điểm B(-2;1) thành B’, khi đó:
Mặt phẳng tọa độ, phép tịnh tiến theo vecto biến đường thẳng d: 2x + 3y - 1 = 0 thành đường thẳng d’ có phương trình
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto biến điểm A(0;2) thành điểm A’ có tọa độ:
Trong mặt phẳng tọa độ, phép tịnh tiến theo biến điểm M (-1; 4) thành điểm M’ có tọa độ là:
Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto biến đường tròn có phương trình (C): thành đường tròn (C’) có phương trình:
Trong mặt phẳng tọa độ cho điểm M(-10;1) và điểm M’(3;8). Phép tịnh tiến theo vecto biến M thành M’, thì tọa độ vecto là: