Trong mặt phẳng Oxy cho đường thẳng d có phương trình x + y - 2 = 0. Hỏi phép dời hình có được là bằng cách thực hiện liên tiếp phép đối xứng qua tâm O và phép tịnh tiến theo vecto biến d thành đường thẳng nào trong các đường thẳng có phương trình sau?
A. 3x + 3y - 2 = 0
B. x - y + 2 = 0
C. x + y + 2 = 0
D. x + y - 3 = 0
Thực hiện phép đối xứng tâm O biến d thành d’, sau đó thực hiện phép tịnh tiến theo biến d’ thành đường thẳng d”.
* Qua phép đối xứng tâm O: biến điểm M(x; y) thuộc d thành điểm M’(x’; y’) thuộc d’.
Ta có: Vì M thuộc d nên: x+ y – 2 = 0 . Suy ra:
-x’ + (- y’) – 2 = 0 hay x’+ y’ + 2= 0
Phương trình đường thẳng d’ : x + y + 2 = 0
* Qua phép đối xứng tịnh tiến theo ( 3; 2) biến điểm A(x; y) thuộc đường thẳng d’ thành điểm A’ (x’; y’) thuộc đường thẳng d”. Ta có:
Vì điểm A thuộc đường thẳng d’ nên: x+ y + 2 =0
Suy ra: (x’ - 3) + (y’ - 2) + 2 = 0 hay x’ + y’ - 3 = 0
Phương trình đường thẳng d” là x + y – 3 = 0
Đáp án D
Cho hình bình hành ABCD. Phép tịnh tiến biến điểm A thành điểm:
Cho hình chữ nhật có O là tâm đối xứng. Hỏi có bao nhiêu phép quay tâm O góc α,0 < α < 2π, biến hình chữ nhật trên thành chính nó?
Cho đường tròn (C) có tâm O và đường kính AB. Gọi ∆ là tiếp tuyến của (C) tại điểm A. Phép tịnh tiến biến ∆ thành:
Cho và điểm M’(4;2). Biết M’ là ảnh của M qua phép tịnh tiến . Tìm M.
Trong mặt phẳng Oxy , qua phép quay Q(O; -1350), M’(2;2) là ảnh của điểm.
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x + y - 3 = 0. Hỏi phép vị tự tâm O tỉ số k = 2 biến d thành đường thẳng nào trong các đường thẳng có phương trình sau?
Cho hai phép vị tự V(O;k) và V(O'; k') với O và O’ là hai điểm phân biệt và kk' = 1. Hợp thành của hai phép vị tự đó là phép biến hình nào sau đây?
Cho hai đường thẳng bất kì d và d’. có bao nhiêu phép quay biến đường thẳng d thành đường thẳng d’?
Hợp thành của một phép tịnh tiến và phép đối xứng tâm là phép biến hình nào trong các phép biến hình sau đây?