Câu nào sau đây đúng?
A. Nếu ba điểm cùng thuộc hai mặt phẳng thì chúng thẳng hàng
B. Nếu hai mặt phẳng có một điểm chung thì chúng cắt nhau theo giao tuyến đi qua điểm chung ấy.
C. Nếu hai đường thẳng không có điểm chung thì chúng không cùng nằm trông một mặt phẳng
D. Nếu hai đường thẳng phân biệt có một điểm chung thì chúng cùng nằm trong một mặt phẳng.
Có thể sửa lại các câu sau thành các câu đúng như sau:
A. Nếu ba điểm cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng
B. Hai mặt phẳng phân biệt có một điểm chung thì chúng cắt nhau theo giao tuyến đi qua điểm chung ấy
C. Nếu hai đường thẳng không có điểm chung thì chưa kết luận được chúng không cùng nằm trong một mặt phẳng
D. Nếu hai đường thẳng có một điểm chung thì chúng cùng nằm trong một mặt phẳng
Đáp án D
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi E, F lần lượt là trung điểm của AB và SC; I, J lần lượt là giao điểm của AF và EF với mặt phẳng (SBD). Tỉ số IA/IF bằng:
Cho tứ diện ABCD. Gọi E, F, G lần lượt là ba điểm trên các cạnh AB, AC, BD sao cho EF cắt BC tại M, EG cắt AD tại N. tìm mệnh đề sai trong các mệnh đề sau đây?
Cho hình tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AB, BC, CD. Thiết diện của tứ diện đi qua ba điểm M, N, P là:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC, P là điểm thuộc DB sao cho PB = 2PD. Gọi Q là giao điểm của CD với mặt phẳng (MNP). Giao tuyến của hai mặt phẳng (MNP) và (ACD) là:
Cho hình chóp tứ giác đều S.ABCD cạnh đáy bằng cạnh bên bằng a. Khoảng cách từ AD tới (SBC) bằng:
Cho hình lăng trụ ABC.A’B’C’ đáy là tam giác đều tâm O, C’O vuông góc với (ABC). Khoảng cách từ O tới đường thẳng CC’ bằng a. Góc tạo bởi mặt phẳng (AA’C’C) và mp(BB’C’C) bằng . Gọi góc giữa cạnh bên và đáy của lẳng trụ là φ thì.
Cho hình chóp tứ giác đều S.ABCD cạnh đáy bằng cạnh bên bằng a. Góc giữa cạnh bên và mặt phẳng đáy bằng:
Cho hình chóp S.ABCD, đáy hình thang ABCD có đáy lớn AD. Trong các mệnh đề sau mệnh đề nào sai?
Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì:
Cho tứ diện đều ABCD cạnh bằng a. gọi trọng tâm các tam giác BCD, ACD lần lượt là . Chu vi thiết diện đó bằng: