Cho hình vuông MNPQ nội tiếp tam giác ABC vuông cân tại A (hình vẽ). Biết . Tính
A.
B.
C.
D.
Ta có
Kẻ AH ⊥ BC => H là trung điểm cạnh BC (vì tam giác ABC vuông cân tại A)
Khi đó AH là đường trung tuyến nên AH = (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
Xét tam giác vuông CNP có = 450 (do tam giác ABC vuông cân) nên tam giác CNP vuông cân tại P
Suy ra CP =PN = 22cm
Tương tự ta có ΔQMB vuông cân tại Q => QM = QB = 22cm
Từ đó BC = PC + PQ + QB = 22 + 22 + 22 = 66cm
Mà AH = (cmt) => AH = = 33cm
Từ đó SABC = AH.BC = .33.66 = 1089 cm2
Đáp án cần chọn là: A
Một tam giác có độ dài ba cạnh là 12cm, 5cm, 13cm. Diện tích tam giác đó là
Cho tam giác ABC, , AB = 6cm, AC = 8cm. Hạ AH ⊥ BC, qua H kẻ HE ⊥ AB, HF ⊥ AC với E ЄAB; F Є AC. Tính BC, EF
Cho hình bình hành ABCD có , AB = 2BC. Gọi I là trung điểm CD, K là trung điểm của AB. Biết chu vi hình bình hành ABCD bằng 60cm. Tính diện tích hình bình hành ABCD
Cho tam giác ABC, , AB = 6cm, AC = 8cm. Hạ AH ⊥ BC, qua H kẻ HE ⊥ AB, HF ⊥ AC với E ЄAB; F Є AC. Gọi M, N lần lượt là trung điểm của HB và HC. Tính diện tích tứ giác MNFE
Cho hình chữ nhật ABCD có AD = 8cm, AB = 9cm. Các điểm M, N trên đường chéo BD sao cho BM = MN = ND. Tính diện tích tam giác CMN
Tam giác ABC có hai trung tuyến AM và BN vuông góc với nhau. Hãy tính diện tích tam giác đó theo hai cạnh AM và BN
Cho hình bình hành ABCD có CD = 4cm, đường cao vẽ từ A đến cạnh CD bằng 3cm. Gọi M là trung điểm của AB. DM cắt AC tại N. Tính diện tích tam giác AMN
Cho hình bình hành ABCD có CD = 4cm, đường cao vẽ từ A đến cạnh CD bằng 3cm. Gọi M là trung điểm của AB. DM cắt AC tại N. Tính diện tích hình bình hành ABCD, diện tích tam giác ADM
Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Biết OA = 12cm, diện tích hình thoi ABCD là . Cạnh của hình thoi là: