Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng . Khoảng cách giữa hai đường thẳng AB và SN là:
A.
B.
C.
D.
+ Ta có
+ Xác định điểm N, mặt phẳng qua SM và song song với BC cắt AC tại N N là trung điểm của AC (MN//BC).
+ Xác định được góc giữa hai mặt phẳng (SBC) và (ABC) là
SA = AB.tan = 2a
AC =
+ Gọi IJ là đoạn vuông góc chung của AB và SN (điểm I thuộc AB và điểm J thuộc SN). Vậy khoảng cách giữa AB và SN là IJ. Ta sẽ biểu thị qua ba vectơ không cùng phương
Ta có:
Thay vào ta tính được m = -6/13; p = 1/13
Do đó: . Suy ra
.
Thay số vào ta tính được IJ = .
Vậy d(AB; SN) = .
Đáp án D
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, mặt bên (SBC) vuông góc với đáy (ABC). Gọi M, N, P lần lượt là trung điểm của AB, SA, AC. Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).
Cho hình chóp S.ABCD có ABCD là hình thang cân (AD//BC) và BC = 2AD = 2a, Gọi M, N, E lần lượt là trung điểm của AB, CD, SA. SA (ABCD) và SA = a. Khoảng cách giữa hai mặt phẳng (MNE) và (SBC) là:
Một hình lập phương được tạo thành khi xếp miếng bìa carton như hình vẽ bên.
Tính khoảng cách từ điểm O đến đường thẳng AB sau khi xếp, biết rằng độ dài đoạn thẳng AB bằng 2a.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA = AB = 2a, và SA (ABCD). Tính khoảng cách từ O đến SB.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt bên SBC là tam giác đều cạnh a và (SBC) vuông góc với mặt đáy. Tính theo a khoảng cách giữa hai đường thẳng SA và BC.
Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và . Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).
Cho các khẳng định sau:
(1) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
(2) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác.
(3) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác.
(4) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Cho tam giác ABC có AB = 14, BC = 10, AC = 16. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại A lấy điểm O sao cho OA = 8. Tính khoảng cách từ O đến đường thẳng BC.
Cho hình chóp S.ABCD có đáy là hình vuông, tâm O, SA vuông góc với đáy, SA = a. Góc giữa đường thẳng SD và mặt phẳng (SAC) bằng . Tính khoảng cách từ điểm D đến mặt phẳng (SBM) với M là trung điểm CD.
Cho khối lập phương ABCDA’B’C’D’. Đoạn vuông góc chung của hai đường thẳng chéo nhau AD và A’C’ là :
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, BD = 2a; tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy, SC = a. Tính khoảng cách từ điểm B đến mặt phẳng (SAD).
Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân, AB = AC = a, . Mặt phẳng (AB’C’) tạo với đáy góc . Tính khoảng cách từ đường thẳng BC đến mặt phẳng (AB’C’) theo a.