Trong mặt phẳng Oxy, cho I(–2;1) và đường thẳng (d): 2x + 2y – 7 = 0. Ảnh của (d) qua phép đối xứng tâm I là đường thẳng có phương trình:
A. 2x + 2y – 11 = 0
B. 2x – 2y + 11 = 0
C. 2x + 2y + 11 = 0
D. –2x + 2y +11 =0
Đáp án C
+ Phép đối xứng tâm I biến đường thẳng d thành d'.
Biến mỗi điểm M (x ; y) thuộc d thành điểm M'(x'; y') thuộc d'.
Vì điểm M thuộc d nên: 2x + 2y - 7= 0 (1)
+ Ta có I là trung điểm của MM' nên :
(2)
Thay (2) vào (1) ta được:
2( -4- x') + 2( 2- y')- 7 = 0 hay - 2x' - 2y' - 11 = 0 hay 2x' + 2y' + 11 = 0
Cho đường thẳng d: 2x + y – 1 = 0. Phương trình đường thẳng d’ đối xứng với d qua gốc tọa độ là:
Cho (d): x + 2y – 5 = 0. Ảnh của (d) qua phép vị tự tâm I(−2;4) tỉ số k = là
Trong mặt phẳng với hệ trục tọa độ Oxy cho đường tròn (C): . Phép đối xứng qua tâm O biến đường tròn (C) thành đường tròn nào trong các đường tròn có phương trình sau:
Cho (d): 3x – 6y + 1 = 0. Phương trình đường thẳng d’ đối xứng với d qua gốc O là:
Cho điểm M(5;2) và đường thẳng (d): 3x – y + 2 = 0. Tìm ảnh của M qua phép đối xứng qua đường thẳng (d)
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I(0;−1) , bán kính R = 3. Ảnh của (C) qua việc thực hiện liên tiếp phép quay tâm O góc quay 180và phép vị tự tâm O tỉ số 2, phép tịnh tiến theo vectơ
Trong mp Oxy, cho parabol (P) : y = + 2x . Phương trình của parabol (Q) đối xứng với (P) qua gốc tọa độ O là:
Trong mp Oxy, cho M(–2;3). Hỏi M là ảnh của điểm nào trong các điểm sau qua phép đối xứng qua đường thẳng x + y = 0?
Cho A(6;–1). Ảnh của A qua phép đối xứng trục qua Oy có toạ độ là:
Cho A(2;–1). Ảnh của A qua phép đối xứng trục qua Oy là A’, ảnh của A’ qua phép đối xứng trục qua Ox là A”có toạ độ là:
Trong mp Oxy, cho M(–2;3). Hỏi M là ảnh của điểm nào trong các điểm sau qua phép đối xứng qua trục Oy
Cho đường tròn (C): – 2y – 3 = 0. Đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng trục Ox. Phương trình đường tròn (C’) là:
Cho đtròn (C) : và đường thẳng (d): y=–x+1. Gọi (C’) là ảnh của (C) qua Đd. Phương trình của (C’) là