Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AC. E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:
A. Tam giác MNE
B. Hình thang MNEF với F là điểm trên cạnh BD mà EF// BC
C. Tứ giác MNEF với F là điểm bất kì trên cạnh BD
D. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF// BC
Chọn B
Định lý về giao tuyến của ba mặt phẳng: Nếu ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng qui hoặc đôi một song song với nhau.
Xét ba mặt phẳng phân biệt (ABC), (BCD), (MNE) có:
Mà MN // BC ⇒ EF // BC (F là giao điểm của MNE với đường thẳng BD)
Từ E, ta kẻ EF // BC, F ∈ BC
⇒ MNEF là hình thang
(Do không phải hình bình hành)
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A.
a) Chứng minh rằng: MD song song với mặt phẳng (SAC).
b) Xác định giao điểm G của đường thẳng MN với mặt phẳng (SAD). Tính tỉ số
Cho hình chóp S.ABCD có đáy là hình thang ABCD (AD// BC). Gọi M là trung điểm của CD. Giao tuyến của hai mặt phẳng (SBM) và (SAC) là:
Trong mặt phẳng, cho 6 điểm phân biệt sao cho không ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
Một hình chóp có tổng số đỉnh và số cạnh bằng 13. Tìm số cạnh của đa giác đáy.
Trong 1 tổ có 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 3 bạn trong tổ tham gia đội tình nguyện của trường. Tính xác suất để 3 bạn được chọn toàn nam?
Trong mặt phẳng tọa độ Oxy, tìm ảnh của đường thẳng d: x+2y-3=0 qua phép tịnh tiến theo
Cho hình chóp S.ABCD có đáy là hình bình hành. Các điểm I, J lần lượt là trọng tâm tam giác SAB, SAD. M là trung điểm CD. Chọn mệnh đề đúng trong các mệnh đề sau:
I-Trắc nghiệm:
Giá trị lớn nhất, nhỏ nhất của hàm số lần lượt là:
Trong mặt phẳng tọa độ (Oxy), ảnh của điểm M(1; -2) qua phép vị tự tâm O tỉ số k = -2 là:
Trong mặt phẳng tọa độ Oxy, tìm ảnh của đường tròn qua phép đối xứng trục Ox.