Gieo một đồng xu 5 lần liên tiếp. Gọi A là biến cố “Lần đầu tiên xuất hiện mặt sấp”. Khi đó:
A. n(A)=16.
B. n(A)=18.
C. n(A)=20.
D. n(A)=22.
Đáp án cần chọn là: A
Lần đầu tiên xuất hiện mặt sấp nên lần đầu chỉ nhận giá trị S
Các lần gieo thứ hai, ..năm có thể nhận S hoặc N nên:
n (A) =1.2.2.2.2=16
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:
Gieo đồng xu hai lần liên tiếp. Biến cố A là biến cố “Mặt ngửa xuất hiện đúng 1 lần”. Số phần tử của là:
Một lô hàng gồm 1000 sản phẩm, trong đó có 50 phế phẩm. Lấy ngẫu nhiên từ lô hàng đó 1 sản phẩm. Xác suất để lấy được sản phẩm tốt là:
Gieo hai con xúc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Số phần tử của không gian mẫu là:
Gieo một con xúc sắc hai lần. Biến cố A là biến cố để hai lần gieo có ít nhất một mặt 6 chấm. Các phần tử của là:
Cho phép thử có không gian mẫu Ω={1;2;3;4;5;6}. Cặp biến cố không đối nhau là:
Gieo đồng xu hai lần liên tiếp. Xác suất để sau hai lần gieo thì mặt ngửa xuất hiện ít nhất một lần.s
Gieo ba đồng xu cân đối, đồng chất. Xác suất để có đúng hai đồng xu xuất hiện mặt sấp là:
Chọn ngẫu nhiên một số tự nhiên nhỏ hơn 30. Tính xác suất của biến cố : “số được chọn là số nguyên tố” ?
Gieo một đồng xu và một con xúc sắc. Số phần tử của không gian mẫu là:
Có 3 viên bi đỏ và 7 viên bi xanh, lấy ngẫu nhiên 4 viên bi .Tính xác suất để lấy được 2 bi đỏ và 2 bi xanh ?
Một hộp có 5 viên bi đỏ và 9 viên bi xanh. Chọn ngẫu nhiên 2 viên bi. Xác suất để chọn được 2 viên bi khác màu là:
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.