Một hộp có 5 viên bi đỏ và 9 viên bi xanh. Chọn ngẫu nhiên 2 viên bi. Xác suất để chọn được 2 viên bi khác màu là:
A. .
B. .
C. .
D. .
Đáp án cần chọn là: B
Gọi A là biến cố: “chọn được 2 viên bi khác màu.“
Số phần tử của không gian mẫu:n(Ω)=
Số khả năng có lợi cho biến cố A là n(A)=.
=>P(A)=.
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:
Gieo đồng xu hai lần liên tiếp. Biến cố A là biến cố “Mặt ngửa xuất hiện đúng 1 lần”. Số phần tử của là:
Một lô hàng gồm 1000 sản phẩm, trong đó có 50 phế phẩm. Lấy ngẫu nhiên từ lô hàng đó 1 sản phẩm. Xác suất để lấy được sản phẩm tốt là:
Gieo một đồng xu 5 lần liên tiếp. Gọi A là biến cố “Lần đầu tiên xuất hiện mặt sấp”. Khi đó:
Gieo một con xúc sắc hai lần. Biến cố A là biến cố để hai lần gieo có ít nhất một mặt 6 chấm. Các phần tử của là:
Gieo hai con xúc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Số phần tử của không gian mẫu là:
Gieo đồng xu hai lần liên tiếp. Xác suất để sau hai lần gieo thì mặt ngửa xuất hiện ít nhất một lần.s
Cho phép thử có không gian mẫu Ω={1;2;3;4;5;6}. Cặp biến cố không đối nhau là:
Gieo ba đồng xu cân đối, đồng chất. Xác suất để có đúng hai đồng xu xuất hiện mặt sấp là:
Chọn ngẫu nhiên một số tự nhiên nhỏ hơn 30. Tính xác suất của biến cố : “số được chọn là số nguyên tố” ?
Gieo một đồng xu và một con xúc sắc. Số phần tử của không gian mẫu là:
Có 3 viên bi đỏ và 7 viên bi xanh, lấy ngẫu nhiên 4 viên bi .Tính xác suất để lấy được 2 bi đỏ và 2 bi xanh ?
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.