Một học sinh chứng minh mệnh đề chia hết cho 7, như sau:
Giả sử (*) đúng với n = k tức là + 1 chia hết cho 7
Ta có: + 1 = 8 - 7, kết hợp với giả thiết + 1 chia hết cho 7 nên suy ra được + 1 chia hết cho 7.
Vậy đẳng thức (*) đúng với mọi
Khẳng định nào sau đây là đúng?
A. Học sinh trên chứng minh đúng.
B. Học sinh chứng minh sai vì không có giả thiết qui nạp.
C. Học sinh chứng minh sai vì không dùng giả thiết qui nạp.
D. Học sinh không kiểm tra bước 1 (bước cơ sở) của phương pháp qui nạp
Đáp án D
Quan sát lời giải trên ta thấy:
Học sinh thực hiện thiếu bước 1: Kiểm tra n = 1 thì + 1 = 9 không chia hết cho 7 nên mệnh đề đó sai.
Dùng quy nạp chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề P(n) đúng với n = k. Khẳng định nào sau đây là đúng?
Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với n = k thì ta cần chứng minh mệnh đề đúng đến:
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên (p là một số tự nhiên), ta tiến hành hai bước:
Bước 1, kiểm tra mệnh đề P(n) đúng với n = p
Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ và phải chứng minh rằng nó cũng đúng với n = k + 1
Trong hai bước trên:
Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k+1 thì ta cần chứng minh mệnh đề đúng với:
Với , ta xét các mệnh đề:
P: “ + 5 chia hết cho 2”;
Q: “ + 5 chia hết cho 3” và
R: “ + 5 chia hết cho 6”.
Số mệnh đề đúng trong các mệnh đề trên là:
Giả sử Q là tập con thật sự của tập hợp các số nguyên dương sao cho
a)
b)
Chọn mệnh đề đúng trong các mệnh đề sau.