Cho dãy số un xác định bởi u1=2un+1=un+12,n≥1. Khi đó mệnh đề nào sau đây là đúng?
A. Dãy un là dãy giảm tới 1 khi n→+∞
B. Dãy un là dãy tăng tới 1 khi n→+∞
C. Không tồn tại giới hạn của dãy un
D. Cả 3 đáp án trên đều sai
Giá trị của K=limn3+n2−13−34n2+n+1+5n bằng
Cho dãy số un xác định bởi u1=1un+1=un(un+1)(un+2)(un+3)+1,(n≥1). Đặt vn=∑i=2n1ui+2. Tính limvn bằng?
Giá trị của D=limn2+2n−n3+2n23 bằng
Cho dãy số un với un=11.2+12.3+13.4+...+1n(n+1). Khi đó limun bằng?
Cho dãy số un với un=1−122.1−132...1−1n2. Khi đó limun bằng?
Tính giới hạn của dãy số un=q+2q2+...+nqn với |q|<1
Giá trị của limn!nn3+2n bằng:
Giá trị của D=limn2+1−3n3+232n4+n+24−nbằng:
Tính giới hạn của dãy số un=121+2+132+23+...+1(n+1)n+nn+1
Cho hình chóp $S.ABC$, gọi $M,\,\,P$ và $I$ lần lượt là trung điểm của $AB,\,\,SC$ và $SB$. Mặt phẳng $(\alpha )$ qua $MP$ và song song với $AC$ và cắt các cạnh $SA,\,\,BC$ tại $N,\,\,Q.$
a) Chứng minh đường thẳng $BC$ song sòng với mặt phẳng $(IMP)$.
b) Xác định thiết diện của $(\alpha )$ và hình chóp. Thiết diện này là hình gì?
c) Tìm giao điểm của đường thẳng $CN$ và mặt phẳng $(SMQ)$.
Người ta trồng $3\,\,003$ cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây. Hỏi có tất cả bao nhiêu cây?
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu $h\,{\text{(m)}}$ của mực nước trong kênh tính theo thời gian $t$ (giờ) trong một ngày $\left( {0 \leqslant t < 24} \right)$ cho bởi công thức \[h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12.\] Tìm $t$ để độ sâu của mực nước là $9\,\,{\text{m}}$ (làm tròn đến chữ số thập phân thứ hai).
Cho hình chóp $S.ABCD$ có đáy là hình thang với các cạnh đáy là $AB$ và $CD$. Gọi $I,\,\,J$ lần lượt là trung điểm của $AD$ và $BC$; $G$ là trọng tâm của tam giác $SAB.$ Giao tuyến của $(SAB)$ và $(IJG)$ là
Tìm khẳng định đúng trong các khẳng định sau.
Cho hình chóp $S.ABC$. Gọi $L,\,\,M,\,\,N$ lần lượt các điểm trên các cạnh $SA,\,\,SB$ và $AC$ sao cho $LM$ không song song với $AB,\,\,LN$ không song song với $SC$. Mặt phẳng $(LMN)$ cắt các cạnh $AB,\,\,BC,\,\,SC$ lần lượt tại $K,\,\,I,\,\,J$. Ba điểm nào sau đây thẳng hàng?
Cho tứ diện $ABCD$. Gọi $H,\,\,K$ lần lượt là trung điểm các cạnh $AB,\,\,BC.$ Trên đường thẳng $CD$ lấy điểm $M$ nằm ngoài đoạn $CD$. Thiết diện của tứ diện với mặt phẳng $(HKM)$ là
Mệnh đề nào đúng trong các mệnh đề sau?