Cho a là một số thực dương khác 1 và các mệnh đề sau:
Hàm số là hàm số mũ
Nếu thì
Hàm số có tập xác định là R
Hàm số có tập giá trị là
Hỏi có bao nhiêu mệnh đề đúng?
A. 1
B. 2
C. 3
D. 4
Vì -5<0 nên không tồn tại. Do đó 1 sai.
Vì cơ số nên từ . Do đó 2 sai.
Hàm số xác định với mọi x. Do đó 3 đúng.
Vì và nên hàm có TGT là . Do đó 4 đúng
Vậy có 3 và 4 đúng
Đáp án cần chọn là: B.
Cho hai hàm số với lần lượt có đồ thị là như hình bên. Mệnh đề nào đúng?
Cho hai hàm số và . Xét các mệnh đề sau:
Đồ thị của hai hàm số f (x) và g (x) luôn cắt nhau tại một điểm.
Hàm số f(x)+g(x) đồng biến khi a > 1, nghịch biến khi 0<a<1
Đồ thị hàm số f (x) nhận trục Oy làm tiệm cận.
Chỉ có đồ thị hàm số f (x) có tiệm cận.
Hỏi có tất cả bao nhiêu mệnh đề đúng?
Cho hai hàm số và . Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng: