Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết SA vuông góc với (ABCD), . Gọi E là trung điểm của AD. Bán kính mặt cầu đi qua các điểm S, A, B, C, E bằng:
A.
B.
C.
D. a
Cho lăng trụ đứng ABC.A’B’C’ có chiều cao bằng 4, đáy ABC là tam giác cân tại A với . Tính mặt cầu ngoại tiếp lăng trụ trên
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, SA vuông góc với mặt phẳng (ABC), SA = 5, AB = 3, BC = 4. Bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC bằng:
Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều cạnh a, cạnh . Gọi D là điểm đối xứng của B qua C. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABD.
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại B có cạnh AB = 3, BC = 4 và góc giữa DC và mặt phẳng (ABC) bằng . Tính thể tích mặt cầu ngoại tiếp tứ diện
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có . Gọi M là trung điểm BB’. Bán kính mặt cầu ngoại tiếp khối chóp M.A’B’C’ bằng:
Cho mặt cầu có bán kính , mặt cầu có bán kính . Tính tỉ số diện tích của mặt cầu và
Nếu tăng bán kính của mặt cầu lên 4 lần thì diện tích mặt cầu tăng lên bao nhiêu lần?
Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho và khoảng cách từ O đến mặt phẳng (ABC) bằng 1. Thể tích của khối cầu (S) bằng: