Cho hình bình hành ABCD, điểm F nằm trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chọn câu đúng nhất.
A. ΔBFE ~ ΔDEA
B. ΔDEG ~ ΔBAE
C.
D. Cả A, B, C đều đúng
Đáp án C
+) Vì ABCD là hình bình hành nên AD // BC => AD // BF (tính chất hbh)
Xét ΔBEF và ΔDEA có:
(hai góc đối đỉnh)
(cặp góc so le trong bằng nhau)
=> ΔBEF ~ ΔDEA (g - g) nên A sai
+) Vì ABCD là hình bình hành nên AB // DC => AB // DF
Xét ΔDGE và ΔBAE ta có:
(2 góc đối đỉnh)
(cặp góc so le trong bằng nhau)
=> ΔDGE ~ ΔBAE (g - g) nên B sai
+) Vì ΔBEF ~ ΔDEA nên (1)
Vì ΔDGE ~ ΔBAE nên (2)
Từ (1) và (2) ta có: nên C đúng
Cho ΔABC vuông tại A, đường cao AH. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Tam giác AIK đồng dạng với tam giác nào dưới đây?
Cho ΔA’B’C’ ~ ΔABC. Biết và hiệu 2 chu vi của 2 tam giác là 16m. Tính chu vi mỗi tam giác?
Cho ΔA’B’C’ ~ ΔABC có chu vi lần lượt là 50cm và 60cm. Diện tích của ΔABC lớn hơn diện tích của ΔA’B’C’ là . Tính diện tích tam giác ABC.
Cho hình chữ nhật ABCD có E là trung điểm của AB. Tia DE cắt AC ở F, cắt CB ở G. Chọn câu đúng.
Một người đo chiều cao của cây nhờ 1 cọc chôn xuống đất, cọc cao 2,45 m và đặt xa cây 1,36m. Sau khi người ấy lùi ra xa cách cọc 0,64m thì người ấy nhìn thấy đầu cọc và đỉnh cây cùng nằm trên một đường thẳng, Hỏi cây cao bao nhiêu? Biết khoảng cách từ chân đến mắt người ấy là 1,65m.
Tỉ số các cạnh bé nhất của 2 tam giác đồng dạng bằng . Tính chu vi p, p’ của 2 tam giác đó, biết p’ - p = 18?
Cho đoạn AC vuông góc với CE. Nối A với trung điểm D của CE và E với trung điểm B của AC, AD và EB cắt nhau tại F. Cho BC = CD = 15cm. Tính diện tích tam giác DEF theo đơn vị ?