IMG-LOGO

Câu hỏi:

12/07/2024 175

Tìm giá trị nhỏ nhất của hàm số y=sinx+cosx+tanx+cotx+1sinx+1cosx

A. 221

Đáp án chính xác

B. 2+1

C. 22+1

D. 21

Trả lời:

verified Giải bởi Vietjack

Đáp án A

y=sinx+cosx+tanx+cotx+1sinx+1cosxy=sinx+cosx+1+sinx+cosxsinxcosx

Đặt t=sinx+cosx2t2 thì sinxcosx=t212

Khi đó:

y=t+2t+1t21=t+2t1=t1+2t1+1

Nếu t1>0t1+2t1+122+1y22+1

Nếu t1<0t<1 thì ta viết lại y=1t+21t1

Ta có: 1t+21t1221t+21t1221 hay y221

Vậy y221

Dấu bằng xảy ra 1t2=2t=12t<1

sinx+cosx=122sinx+π4=12sinx+π4=122

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x),y=g(x). Hai hàm số y=f'(x),y=g'(x) có đồ thị hàm số như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số y=g'(x).

Hàm số hx=fx+6g2x+52 đồng biến trên khoảng nào dưới đây?

Xem đáp án » 19/06/2021 1,219

Câu 2:

Biết rằng đồ thị của hàm số y=P(x)=x32x25x+2 cắt trục hoành tại ba điểm phân biệt lần lượt có hoành độ là x1,x2,x3. Khi đó giá trị của biểu thức T=1x124x1+3+1x224x2+3+1x324x3+3 bằng:

Xem đáp án » 19/06/2021 831

Câu 3:

Với mỗi số thực x, gọi f(x) là giá trị nhỏ nhất trong các số g1x=4x+1,g2x=x+2,g3x=2x+4. Giá trị lớn nhất của f(x) trên R là:

Xem đáp án » 19/06/2021 810

Câu 4:

Cho hàm số y=xm33x+m2 có đồ thị là Cm với m là tham số thực. Biết điểm M(a; b) là điểm cực đại của Cm ứng với một giá trị m thích hợp, đồng thời là điểm cực tiểu của Cm ứng với một giá trị khác của m. Tổng S=2018a+2020b bằng:

Xem đáp án » 19/06/2021 716

Câu 5:

Cho hàm số f(x) xác định trên R và có đồ thị f'(x) như hình vẽ. Đặt gx=fxx. Hàm số g(x) đạt cực đại tại điểm nào sau đây?

Xem đáp án » 19/06/2021 335

Câu 6:

Cho hàm số y=ax2+x14x2+bx+9 có đồ thị (C), trong đó a, b là các hằng số dương thỏa mãn . Biết rằng (C) có đường tiệm cận ngang y = c và có đúng 1 đường tiệm cận đứng. Tính tổng T=3a+b24c

Xem đáp án » 19/06/2021 256

Câu 7:

Cho hàm số f (x) có đạo hàm trên R và có đồ thị của hàm y = f'(x) như hình vẽ. Biết rằng f0+f3=f2+f5. Giá trị nhỏ nhất và giá trị lớn nhất của f(x) trên đoạn 0;5 lần lượt là:

Xem đáp án » 19/06/2021 240

Câu 8:

Hai điểm M, N lần lượt thuộc hai nhánh của đồ thị hàm số y=3x1x3. Khi đó độ dài đoạn thẳng MN ngắn nhất bằng:

Xem đáp án » 19/06/2021 239

Câu 9:

Cho hàm số f(x) có đồ thị hàm đường cong (C), biết đồ thị của f'(x) như hình vẽ:

Tiếp tuyến của (C ) tại điểm có hoành độ bằng 1 cắt đồ thị (C ) tại hai điểm A, B phân biệt lần lượt có hoành độ a, b. Chọn khẳng định đúng trong các khẳng định sau:

Xem đáp án » 19/06/2021 238

Câu 10:

Cho hàm số y=16x473x2 có đồ thị hàm số (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt Mx1;y1,Nx2;y2M,NA thỏa mãn y1y2=4x1x2?

Xem đáp án » 19/06/2021 235

Câu 11:

Tìm tập hợp S tất cả các giá trị của tham số thực m để đồ thị hàm số y=x42m2x2+m4+3 có ba điểm cực trị đồng thời ba điểm cực trị đó cùng với gốc tọa độ O tạo thành một tứ giác nội tiếp.

Xem đáp án » 19/06/2021 226

Câu 12:

Cho hàm số f(x)=x3+ax2+bx2 thỏa mãn a+b>13+2a+b<0. Số điểm cực trị của hàm số y=fx bằng:

Xem đáp án » 19/06/2021 225

Câu 13:

Biết rằng đồ thị hàm số bậc 4: y = f(x) được cho như hình vẽ sau:

Tìm số giao điểm của đồ thị hàm số y=g(x)=f'x2fx.f''x và trục Ox

Xem đáp án » 19/06/2021 220

Câu 14:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số y=x42mx2+m1 có 3 điểm cực trị. Đồng thời ba điểm cực trị đó là ba đỉnh của một tam giác có bán kính đường tròn ngoại tiếp bằng 1.

Xem đáp án » 19/06/2021 213

Câu 15:

Gọi d là đường thẳng đi qua A(2;0) có hệ số góc m cắt đồ thị y=x3+6x29x+2 tại 3 điểm phân biệt A, B, C. Gọi B’, C’ lần lượt là hình chiếu vuông góc của B, C lên trục tung. Tìm giá trị dương của m để hình thang BB’C’C có diện tích bằng 8.

Xem đáp án » 19/06/2021 206

Câu hỏi mới nhất

Xem thêm »
Xem thêm »