Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

10/07/2024 124

Cho hàm số fx=x36x2+9x. Đặt fkx=ffk1x (với k là số tự nhiên lớn hơn 1). Tính số nghiệm của phương trình f8x=0

A. 3281

Đáp án chính xác

B. 3280

C. 6561

D. 6562

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Ta có đồ thị hàm số fx=x36x2+9x như sau:

Dựa vào đồ thị hàm số ta có thể suy ra số nghiệm của phương trình f(x) = m như sau:

m<0m>4 phương trình có 1 nghiệm duy nhất

m=0m=4 phương trình có 2 nghiệm phân biệt

0<m<4 phương trình có 3 nghiệm phân biệt

Xét phương trình

f2x=0fx36fx2+9fx=0fx=0fx=3

Ta thấy phương trình f(x) = 0 có 2 nghiệm phân biệt, phương trình f(x) = 3 có 3 nghiệm phân biệt

Vậy phương trình f2x=0 có 5 nghiệm phân biệt

Xét phương trình 

f3x=0ff2x=0f2x36f2x2+9f2x=0f2x=0f2x=3

Phương trình f2x=0 có 2 + 3 nghiệm phân biệt.

Phương trình

f2x=3fx36fx2+9fx=3fx3,880;4fx1,650;4fx0,460;4

 phương trình f2x=3 có 9 nghiệm phân biệt

Vậy phương trình f3x=0 có 2+3+32 nghiệm phân biệt (cmt)

Phương trình

f3x=3f2x36f2x2+9f2x=3f2x3,880;4f2x1,650;4f2x0,460;4

Ta thấy mỗi phương trình f2x=m ở trên có 9 nghiệm phân biệt nên 3 phương trình sẽ có 3.9=33 nghiệm phân biệt.

Vậy phương trình f4x=0 có 2+3+32+33 nghiệm.

Cứ như vậy ta tính được phương trình f8x=0 có 2+3+32+33+...+37=2+313713=3281 nghiệm.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x),y=g(x). Hai hàm số y=f'(x),y=g'(x) có đồ thị hàm số như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số y=g'(x).

Hàm số hx=fx+6g2x+52 đồng biến trên khoảng nào dưới đây?

Xem đáp án » 19/06/2021 1,223

Câu 2:

Biết rằng đồ thị của hàm số y=P(x)=x32x25x+2 cắt trục hoành tại ba điểm phân biệt lần lượt có hoành độ là x1,x2,x3. Khi đó giá trị của biểu thức T=1x124x1+3+1x224x2+3+1x324x3+3 bằng:

Xem đáp án » 19/06/2021 835

Câu 3:

Với mỗi số thực x, gọi f(x) là giá trị nhỏ nhất trong các số g1x=4x+1,g2x=x+2,g3x=2x+4. Giá trị lớn nhất của f(x) trên R là:

Xem đáp án » 19/06/2021 813

Câu 4:

Cho hàm số y=xm33x+m2 có đồ thị là Cm với m là tham số thực. Biết điểm M(a; b) là điểm cực đại của Cm ứng với một giá trị m thích hợp, đồng thời là điểm cực tiểu của Cm ứng với một giá trị khác của m. Tổng S=2018a+2020b bằng:

Xem đáp án » 19/06/2021 723

Câu 5:

Cho hàm số f(x) xác định trên R và có đồ thị f'(x) như hình vẽ. Đặt gx=fxx. Hàm số g(x) đạt cực đại tại điểm nào sau đây?

Xem đáp án » 19/06/2021 338

Câu 6:

Cho hàm số y=ax2+x14x2+bx+9 có đồ thị (C), trong đó a, b là các hằng số dương thỏa mãn . Biết rằng (C) có đường tiệm cận ngang y = c và có đúng 1 đường tiệm cận đứng. Tính tổng T=3a+b24c

Xem đáp án » 19/06/2021 259

Câu 7:

Hai điểm M, N lần lượt thuộc hai nhánh của đồ thị hàm số y=3x1x3. Khi đó độ dài đoạn thẳng MN ngắn nhất bằng:

Xem đáp án » 19/06/2021 242

Câu 8:

Cho hàm số f (x) có đạo hàm trên R và có đồ thị của hàm y = f'(x) như hình vẽ. Biết rằng f0+f3=f2+f5. Giá trị nhỏ nhất và giá trị lớn nhất của f(x) trên đoạn 0;5 lần lượt là:

Xem đáp án » 19/06/2021 242

Câu 9:

Cho hàm số f(x) có đồ thị hàm đường cong (C), biết đồ thị của f'(x) như hình vẽ:

Tiếp tuyến của (C ) tại điểm có hoành độ bằng 1 cắt đồ thị (C ) tại hai điểm A, B phân biệt lần lượt có hoành độ a, b. Chọn khẳng định đúng trong các khẳng định sau:

Xem đáp án » 19/06/2021 241

Câu 10:

Cho hàm số y=16x473x2 có đồ thị hàm số (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt Mx1;y1,Nx2;y2M,NA thỏa mãn y1y2=4x1x2?

Xem đáp án » 19/06/2021 237

Câu 11:

Tìm tập hợp S tất cả các giá trị của tham số thực m để đồ thị hàm số y=x42m2x2+m4+3 có ba điểm cực trị đồng thời ba điểm cực trị đó cùng với gốc tọa độ O tạo thành một tứ giác nội tiếp.

Xem đáp án » 19/06/2021 229

Câu 12:

Cho hàm số f(x)=x3+ax2+bx2 thỏa mãn a+b>13+2a+b<0. Số điểm cực trị của hàm số y=fx bằng:

Xem đáp án » 19/06/2021 227

Câu 13:

Biết rằng đồ thị hàm số bậc 4: y = f(x) được cho như hình vẽ sau:

Tìm số giao điểm của đồ thị hàm số y=g(x)=f'x2fx.f''x và trục Ox

Xem đáp án » 19/06/2021 222

Câu 14:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số y=x42mx2+m1 có 3 điểm cực trị. Đồng thời ba điểm cực trị đó là ba đỉnh của một tam giác có bán kính đường tròn ngoại tiếp bằng 1.

Xem đáp án » 19/06/2021 215

Câu 15:

Cho hàm số y = f(x) có đạo hàm f'(x) trên R, phương trình f'(x) = 0 có 4 nghiệm thực và đồ thị hàm số f'(x) như hình vẽ. Tìm số điểm cực trị của hàm số y=fx2

Xem đáp án » 19/06/2021 209

Câu hỏi mới nhất

Xem thêm »
Xem thêm »