Cho hàm số . Có tất cả bao nhiêu giá trị nguyên của tham số m sao cho hàm số có giá trị nhỏ nhất trên khoảng
A. 2
B. 1
C. Vô số
D. 3
Ta có:
Cho
Ta có: , khi đó phương trình có 2 nghiệm phân biệt:
Ta có BBT:
Ta có:
TH1:
Ta có:
Để hàm số có GTNN trên thì
Xét hàm số ta có
BBT:
Dựa vào BBT ta thấy
Kết hợp điều kiện
TH2: , khi đó GTNN của hàm số trên là
Kết hợp 2 trường hợp ta có: mà
Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: D
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số trên đoạn bằng – 1.
Cho x, y là các số thực thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức
Cho f (x) mà đồ thị hàm số như hình vẽ bên
Bất phương trình nghiệm đúng với mọi khi và chỉ khi:
Cho hàm số có đồ thị như hình bên:
Giá trị nguyên lớn nhất của tham số m để hàm số đồng biến trên khoảng là:
Cho hàm số f (x). Biết rằng hàm số có đồ thị như hình dưới đây. Trên đoạn , hàm số đạt giá trị nhỏ nhất tại điểm
Cho hai số thực x, y thỏa mãn Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức . Có bao nhiêu giá trị nguyên thuộc đoạn của tham số a để ?
Cho các số thực x, y thay đổi thỏa mãn và hàm số . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của . Tính M + m?
Cho hàm số có đồ thị là . Gọi là một điểm bất kì trên (C). Khi tổng khoảng cách từ M đến hai trục tọa độ là nhỏ nhất, tính tổng