Cho khối lăng trụ ABC.A’B’C’ có AB= BC= 5a, AC= 6a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) là trung điểm của AB và A’C= .Tính thể tích V của khối lăng trụ ABC.A’B’C’ theo a
A. 12
B. 12
C. 36
D.
Đáp án C.
Vậy thể tích V của khối lăng trụ ABC.A’B’C’ là
Cho tam giác đều ABC cạnh a quay xung quanh đường cao AH tạo nên một hình nón. Tính diện tích xung quanh của hình nón đó.
Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Gọi M là trung điểm của SB. Plà điểm thuộc cạnh SD sao cho SP = 2DP. Mặt phẳng (AMP) cắt cạnh SC tại N. Tính thể tích của khối đa diện ABCDMNP theo V
Cho khối tứ diện đều ABCD cạnh bằng Gọi M, N, P lần lượt là trọng tâm của ba tam giác ABC, ABD, ACD. Tính thể tích V của khối chóp AMNP.
Cho hình lập phương ABCD. A’B’C’D’có cạnh bằng a. Gọi S là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hình vuông ABCD và A’B’C’D’ . Tính S.
Hình trụ có bán kính đáy bằng a, chu vi của thiết diện qua trục bằng 10a. Thể tích của khối trụ đã cho bằng:
Cho khối chóp S.ABC có đáy là tam giác vuông tại A SB
, góc giữa đường thẳng SC và mặt phẳng (ABC) là 60°. Tính thể tích V của khối chóp S.ABC theo a.
Cho khối lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình vuông. Hình chiếu vuông góc của A trên mặt phẳng (ABCD) là trung điểm của AB, góc giữa mặt phẳng (A’CD) và mặt phẳng (ABCD) là . Thể tích khối chóp B’.ABCD là Tính độ dài đoạn thẳng AC theo a
Cho hình chóp tứ giác đều S.ABCD có cạnh bên và cạnh đáy đều bằng a. Gọi O là tâm của ABCD. Gọi M là trung điểm SC và M' là hình chiếu vuông góc của M lên (ABCD). Diện tích của tam giác M' BD bằng:
Cho hình chóp S.ABCD có ABCD là hình thang, AD = SA = 2a. Gọi E là điểm đối xứng của C qua SD. Biết SA vuông góc với đáy, tìm bán kính mặt cầu ngoại tiếp hình chóp S.EBD.
Cho tứ diện đểu ABCD cạnh A. Gọi O là tâm của tam giác đểu BCD. M, N lần lượt là trung điểm của AC, AB. Quay hình thang BCMN quanh đường thẳng AO ta được khối tròn xoay có thể tích là bao nhiêu?
Cho hình hộp chữ nhật ABCD. A’B’C’D’có thể tích bằng 48 Tính thể tích phần chung của hai khối chóp AB’CD’và A’BC’D.
Cho tứ diện ABCD có , đáy ABC thỏa mãn điều kiện
Gọi H, K lần lượt là hình chiếu vuông góc của A lên DB và DC.
Tính thể tích V của khối cầu ngoại tiếp khối chóp A. BCHK.
Xét khối hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là một hình vuông và diện tích toàn phần của hình hộp đó là 32. Thể tích lớn nhất của khối hộp ABCD.A’B’C’ là bao nhiêu?
Cho hình lăng trụ tứ giác ABCD. A'B'C'D' cạnh đáy bằng a, góc giữa A’B và mặt phẳng (A’ ACC’) bằng . Tính thể tích V của khối lăng trụ đã cho.