Tính đạo hàm của hàm số y = sin2(cos(tan43x))
A: y’ = -sin(2cos(tan43x)).(sin(tan43x)).4tan33x.(1 + tan33x).3
B: y’ = -sin(2cos(tan43x)).sin(tan43x)
C: y’ = -sin(2cos(tan43x)).sin(tan43x).sin4x
D: Tất cả sai
Chọn A.
Đầu tiên áp dụng với u = sin(cos(tan43x))
y' = 2sin(cos(tan43x)).[sin(cos(tan43x))]’
Sau đó áp dụng (sin u)’, với u = cos(tan43x)
y' = 2sin(cos(tan43x)).cos(cos(tan43x)).(cos(tan43x))’
Áp dụng (cos u)’, với u = tan43x.
y' = -sin(2cos(tan43x)).(sin(tan43x)).(tan43x)’.
Áp dụng với u = tan3x
y’ = -sin(2cos(tan43x)).(sin(tan43x)).4tan33x.(tan3x)’.
y' = -sin(2cos(tan43x)).(sin(tan43x)).4tan33x.(1 + tan23x).(3x)’.
y’ = -sin(2cos(tan43x)).(sin(tan43x)).4tan33x.(1 + tan33x).3.
Cho hàm số f(x) = sin6x + cos6x + 3sin2xcos2x. Khi đó f’(x) có giá trị bằng bao nhiêu?