Cho hình trụ có bán kính đáy bằng a và chiều cao bằng h. Tính thể tích V của khối lăng trụ tam giác đều nội tiếp hình trụ đã cho.
Cho tứ diện ABCD có AB,AC,AD đôi một vuông góc với nhau, AB=a, AC=b, AD=c Tính thể tích V của khối tứ diện ABCD theo a, b, c
Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là hình bình hành. Các đường chéo DB¢ và AC¢ lần lượt tạo ra với đáy góc và Biết góc BAD bằng chiều cao hình lăng trụ bằng 2. Tính thể tích khối lăng trụ
Cho khối tứ diện ABCD có thể tích V. Gọi là trọng tâm 4 mặt của tứ diện ABCD. Thể tích của khối tứ diện là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SA vuông góc với đáy (ABCD) Góc giữa đường thẳng SC và mặt phẳng (SAB) bằng với Tính góc giữa đường thẳng SO và mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a Cạnh bên SA vuông góc với mặt phẳng đáy. Trong các tam giác sau, tam giác nào không phải là tam giác vuông?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu và tam giác ABC với Tìm tọa độ điểm M thuộc cầu (S) sao cho khối tứ diên MABC có thể tích lớn nhất.
Cho tam giác ABC nội tiếp trong đường tròn tâm O, bán kính R có Kẻ BHAC Quay tam giác ABC quanh trục AC thì BHC tạo thành hình nón xoay có diện tích xung quanh bằng?
Cho tam giác SAB vuông tại A, ABS= đường phân giác trong của ABS cắt SA tại điểm I. Vẽ nửa đường tròn tâm I bán kính IA (như hình vẽ). Cho và nửa đường tròn trên quay quanh cạnh SA tạo nên các khối tròn xoay tương ứng có thể tích Khẳng định nào dưới đây đúng?
Cho hình chóp S.ABCD có đáy là hình vuông; SA=AB=a và Gọi M là trung điểm AD, tính khoảng cách giữa hai đường thẳng SC và BM
Tính tổng diện tích tất cả các mặt của khối đa diện đều loại {3;5} có cạnh bằng 1
Cho hình thang cân ABCD có các cạnh đáy và cạnh bên AD=BC=2a Tính theo a thể tích V của khối tròn xoay thu được khi quay hình thang cân ABCD quanh trục đối xứng của nó.
Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD, E là trung điểm của cạnh SA, F, G là các điểm thuộc cạnh SC, AB (F không là trung điểm của SC). Thiết diện của hình chóp cắt bởi mặt phẳng (EFG) là
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng Gọi O là tâm của đáy ABC, là khoảng cách từ A đến mặt phẳng (SBC), là khoảng cách từ O đến mặt phẳng (SBC). Tính
Tứ diện OABC có OA=OB=OC=1 và Tìm góc giữa OC và (OAB) để tứ diện có thể tích là
Cho tam giác AOB vuông tại O và OAB= Đường cao hạ từ O là OH,OH=a Tính thể tích khối nón tròn xoay tạo bởi tam giác AOB khi quay quanh trục OA.