Tính diện tích mặt cầu ngoại tiếp hình lập phương có độ dài đường chéo bằng 4a
Một khối lập phương có diện tích một mặt bằng 4. Nếu tăng cạnh của khối lập phương lên gấp đôi thì thể tích khối lập phương đó bằng:
Hình chóp có một nửa diện tích đáy là S, chiều cao là 2h thì có thể tích là
Cho đường thẳng L cắt và không vuông với quay quanh thì ta được
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a các mặt bên (SAB), (SAD) cùng vuông góc với mặt phẳng đáy, SA=a; góc giữa đường thẳng SC và mặt phẳng (SAB) bằng a. Khi đó tan nhận giá trị nào trong các giá trị sau:
Cho khối hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi lần lượt là thể tích hai khối đa diện chứa C và A'. Tính .
Cho hình trụ có thiết diện đi qua trục là một hình vuông có cạnh 4a. Diện tích xung quanh của hình trụ là
Cho hình chóp tứ giác đều S.ABCD có SA=a và SAB=. Gọi Q là trung điểm cạnh SA. Trên các cạnh SB,SC,SD lần lượt lấy các điểm M,N,P không trùng với các đỉnh hình chóp. Tìm giá trị nhỏ nhất của tổng AM+MN+NP+PQ theo a
Cho một đa diện có đỉnh và mỗi đỉnh là đỉnh chung của đúng 3 cạnh. Chọn mệnh đề đúng trong các mệnh đề sau
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Góc BAD có số đo bằng . Hình chiếu của S lên mặt phẳng (ABCD) là trọng tâm tam giác ABC .Góc giữa (ABCD) và (SAB) bằng . Tính khoảng cách từ B đến mặt phẳng (SCD) .
Cho hình hộp chữ nhật có độ dài đường chéo của các mặt lần lượt là . Tính thể tích của hình hộp đã cho.
Cho hình lăng trụ ABC.A'B'C' có các mặt bên đều là hình vuông cạnh a Gọi D,E,F lần lượt là trung điểm của các cạnh BC, A'C' , C'B' Tính khoảng cách giữa hai đường thẳng DE và AB'.
Cho hai đường thẳng phân biệt cùng song song với một mặt phẳng thì ta có :