Biết rằng đồ thị hàm số và đường thẳng y = x – 2 cắt nhau tại hai điểm phân biệt A(xA;yA) và B(xB;yB). Tính yA + yB.
A. yA + yB = -2
B. yA + yB = 2
C. yA + yB = 4
D. yA + yB = 0
Đáp án D
Xét phương trình hoành độ giao điểm
x2 – 4x – 1 = 0
Giả sử A(2 + ; ); B(2 - ; -) => yA + yB = 0
Hàm số y = mx4 + (m + 3)x2 + 2m – 1 chỉ đạt cực đại mà không có cực tiểu với m
Cho hàm số y = mx4 – (m – 1)x2 – 2. Tìm tất cả các giá trị thực của m để đồ thị hàm số có ba điểm cực trị
Tung độ giao điểm của đồ thị các hàm số y = x3 – 3x2 + 2, y = -2x + 8 là:
Cho hàm số Tìm tất cả các giá trị của m để hàm số đạt cực đại tại điểm x = π/3
Cho hàm số y = x4 – 8x2 – 4. Các khoảng đồng biến của hàm số là:
Có bao nhiêu điểm M thuộc đồ thị hàm số sao cho khoảng cách từ M đến trục tung bằng hai lần khoảng cách từ M đến trục hoành
Đồ thị hàm số có các điểm cực đại, cực tiểu có hoành độ dương khi m thỏa mãn:
Hàm số y = x3/3 – (m + 1)x2 + (2m2 + 1)x + m đạt cực tiểu tại x = 1 khi
Cho hàm số y = x3 + ax2 + bx + c đi qua điểm A(0;-4) và đạt cực đại tại điểm B(1;0) hệ số góc k của tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng -1 là: