Cho phương trình ẩn x (với m là tham số)
m2x + 4m – 3 = m2 + x (1)
a) Giải phương trình với m = 2.
b) Tìm các giá trị của m để phương trình (1) có nghiệm duy nhất.
c) Tìm các giá trị nguyên của m để phương trình (1) có nghiệm duy nhất là số nguyên.a) Thay m = 2 vào phương trình (1), ta được:
22x + 4m – 3 = 22 + x
Û 4x + 8 – 3 = 4 + x
Û 4x + 5 = 4 + x
Û 4x – x = 4 – 5
Û 3x = – 1
Û x = – .
Vậy với m = 2 thì phương trình có một nghiệm là x = – .b) Ta có: m2x + 4m – 3 = m2 + x
<=> (m2 – 1)x = m2 – 4m + 3
<=> x =
Để phương trình (1) có một nghiệm duy nhất thì:
m2 – 1 ≠ 0
Û (m + 1)(m – 1) ≠ 0
Û m ≠ ±1.
Vậy để phương trình (1) có một nghiệm duy nhất thì m ≠ ±1.c) Từ câu b ta có: x =
Để phương trình (1) có nghiệm duy nhất là số nguyên thì và m ≠ ±1.
Khi đó, m ≠ ±1 và (m + 1) Î Ư(4) = {±1; ±2; ±4}.
Ta có bảng sau:Giải bài toán bằng cách lập phương trình
Trong đợt dịch Covid tháng 2 – 2021, một siêu thị đã thu mua rau giúp nông dân tỉnh Hải Dương để bán cho người tiêu dùng. Lúc đầu siêu thị dự định bán hết khối lượng rau đó trong vòng 18 ngày. Nhưng thực tế, số lượng người đến mua rau nhiều hơn dự định, vì vậy mỗi ngày siêu thị bán vượt mức 120 kg và đã bán hết khối lượng rau đó sớm hơn dự định 3 ngày. Tính khối lượng rau mà siêu thị đã thu mua.Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE cắt nhau ở H.
a) Chứng minh DABD DACE.
b) Chứng minh CH. CE = CD. CA.
c) Kẻ EK ^ AC tại K; DI ^ EC tại I. Chứng minh AH // IK.
d) Chứng minh SEIK ≤ SABC.Giải các phương trình sau:
a) 3(x – 5) + 2(x + 7) = x + 11.
b) x2 – 4 + 3x(x + 2) = 0.
c) x2 + 3x – 18 = 0.
d)
Cho hai số thực khác nhau a, b thỏa mãn:
Tính giá trị của biểu thức: M =