Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A′B′C′ có hai đỉnh B,C thuộc trục Oz và AA′=1 (C không trùng với O). Biết véc tơ với là một véc tơ chỉ phương của đường thẳng A′C. Tính .
A.T=5
B.T=16
C. T=4
Phương trình
Mặt phẳng (AMM′A′) đi qua A′ và vuông góc với BC nên (AMM′A′) đi qua và nhận làm VTPT hay
Mà
Tam giác ABC đều có độ dài đường cao
Gọi với thì và M(0;0;1) là trung điểm
Khi đó vì hay C(0;0;2)
hay là một VTCP của A′C.
Suy ra
Đáp án cần chọn là: B
Trong không gian Oxyz, cho điểm M(−1;3;2) và mặt phẳng . Đường thẳng đi qua M và vuông góc với (P) có phương trình là
Cho đường thẳng d có phương trình và mặt phẳng (P) có phương trình (P):x+y+z−10=0. Trong các khẳng định sau, khẳng định nào đúng?
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng (α):4x+3y−7z+1=0. Phương trình tham số của d là:
Trong không gian Oxyz cho hai mặt phẳng (P):2x+y−z−3=0 và (Q):x+y+z−1=0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P) và (Q) là:
Cho đường thẳng và mặt phẳng (P):x+y−z−3=0. Tọa độ giao điểm của d và (P) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y=0. Phương trình nào sau đây là phương trình đường thẳng qua A(−1;3;−4) cắt trục Ox và song song với mặt phẳng (P):
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;2;−3)và mặt phẳng (P):x+y−2z−1=0. Phương trình đường thẳng (d) đi qua A và vuông góc với mặt phẳng (P) là:
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (α):4x+3y−7z+3=0 và điểm I(0;1;1). Phương trình mặt phẳng đối xứng với qua I là:
Trong không gian Oxyz, gọi Δ là đường thẳng đi qua M(0;0;2) và song song với mặt phẳng sao cho khoảng cách từ A(5;0;0) đến đường thẳng nhỏ nhất. Một vectơ chỉ phương của đường thẳng là
Cho đường thẳng d có VTCP và mặt phẳng (P) có VTPT . Nếu d//(P) thì:
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và 2 đường thẳng. Phương trình mặt phẳng qua A và song song với là:
Trong không gian Oxyz, cho mặt phẳng (P):4y−z+3=0 và hai đường thẳng . Đường thẳng d vuông góc với mặt phẳng (P) và cắt cả hai đường thẳng có phương trình là
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(4;1;0) và C(−1;4;−1). Mặt phẳng (P) nào dưới đây chứa đường thẳng AB mà khoảng cách từ C đến (P) bằng .