Cho tam giác ABC vuông tại A. Lấy điểm O thuộc AB. Vẽ OM vuông góc với BC tại M. Tia MO cắt AC tại N. Chọn câu đúng.
Hướng dẫn giải
Đáp án đúng là: D
Xét ∆NBC có:
NM là đường cao (OMBC, N Î OM);
BA là đường cao (BA NC);
NM cắt BA tại O.
Do đó O là trực tâm của ∆ABC.
Suy ra CO là đường cao của ∆ABC.
Do vậy CO vuông góc với NB.
Vậy đáp án B và C đều đúng.
Điền vào chỗ trống sau: “Ba đường cao của một tam giác cùng đi qua một điểm. Điểm này được gọi là … của tam giác”.
Cho tam giác ABC nhọn có ba đường cao AM, BN, CP. Biết AM = BN = CP. Khi đó tam giác ABC là:
Điền vào chỗ trống sau: “Đoạn thẳng vuông góc kẻ từ một đỉnh của một tam giác đến đường thẳng chứa cạnh đối diện gọi là … của tam giác đó”.
Cho ΔABC vuông cân tại B. Trên cạnh AB lấy điểm H. Trên tia đối của tia BC lấy điểm D sao cho BH = BD. Chọn câu đúng.
Cho tam giác ABC có đường cao AH và BE cắt nhau tại O. Cho = 50°. Số đo góc bằng :
Cho ΔABC, hai đường cao AM và BN cắt nhau tại H. Em chọn phát biểu đúng.
Cho tam giác ABC có đường cao BE và trực tâm O .AO cắt BC tại H. Số đo là:
Cho tam giác ABC có đường cao AH và BE cắt nhau tại O. Cho = 30°. Số đo bằng :