Cho hàm số Gọi F (x) là nguyên hàm của hàm số f (x) trên ℝ thỏa mãn F (0) = 2; F (-2) = 1. Giá trị của F (1) - F (-3) bằng
A. 31;
B. 22;
C. -19;
Đáp án đúng là: B
F (x) là nguyên hàm của hàm số f (x) trên ℝ nên ta có:
+) x ³ -1 nên suy ra
Mà F (0) = 2 Þ C1 = 2
Vậy suy ra F (x) = x2 + 3x + 2 (x ³ -1)
Þ F (1) = 1 + 3 + 2 = 6
+) x £ -1 nên suy ra
Mà F (-2) = 1 Þ C2 = 5
Vậy suy ra F (x) = x3 - 2x + 5 (x £ -1)
Þ F (-3) = -27 + 6 + 5 = -16
Khi đó F (1) - F (-3) = 6 + 16 = 22.
Trong không gian Oxyz, phương trình mặt phẳng chứa đường thẳng (d): x - 1 = y - 2 = z + 1 và có khoảng cách đến điểm A(2; 3; -3) lớn nhất có phương trình
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm P(1; -1; 2); Q(2; 0; 1) là
Trong hệ tọa độ Oxyz cho M(2; 5; -1) và N(4; 3; 0) độ dài đoạn thẳng MN bằng
Biết z1; z2 = 4 + 2i là hai nghiệm của phương trình ax2 + bx + c = 0; (a; b; c Î ℝ và a ¹ 0), Giá trị của T = |z1| + 3|z2| là
Biết F(x) là một nguyên hàm xủa hàm số f (x) = ex + 2x thỏa mãn F (1) = e. Khi đó, F (x) bằng
Diện tích S hình phẳng giới hạn bởi các đường thẳng y = x3 + 1; y = 0; x = 0; x = 1 là
Trong hệ tọa độ Oxyz điểm M' đối xứng của điểm N(2; 3; -4) qua gốc tọa độ O có tọa độ
Phương trình z3 = 1 có ba nghiệm phức phân biệt và A; B; C là các điểm biểu diễn ba số phức đó trên mặt phẳng phức. Trọng tâm tam giác ABC có tọa độ là