Phương trình z2 + a.z + b = 0, với a, b là các số thực nhận số phức 1 - i là một nghiệm. Khi đó a - b bằng
A. -2;
B. -4;
C. 4;
Đáp án đúng là: B
Số phức z1 = 1 - i là một nghiệm của phương trình nên suy ra z2 = 1 + i cũng là một nghiệm của phương trình
Ta có phương trình z2 + a.z + b = 0
Theo Vi-ét:
Khi đó a - b = (-2) - 2 = -4.
Trong không gian Oxyz, cho hai điểm A(-2; 3; 1) và B(5; 6; 2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tỉ số bằng
Số phức z = a + bi, a, b Î ℝ là nghiệm của phương trình
. Tổng T = a2 + b2 bằngTrong không gian Oxyz, mặt cầu (S): (x + 1)2 + (y - 2)2 + z2 = 9 có bán kính bằng
Gọi z1 và z2 là hai nghiệm phức của phương trình z2 - z + 3 = 0. Khi đó |z1| + | z2| bằng
Gọi z0 là nghiệm phức có phần ảo dương của phương trình z2 - 4z + 13 = 0. Trên mặt phẳng tọa độ, điểm biểu diễn của số phức z0 là
Trong không gian Oxyz, cho hai điểm A(-1; 2; 0) và B(3; 0; 2). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là
Cho hàm số f (x) xác định và liên tục trên ℝ. Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f (x), y = 0, x = -2 và x = 3 (như hình vẽ). Khẳng định nào dưới đây đúng?
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị của hàm số f '(x) như hình bên dưới. Khẳng định nào sau đây đúng?
Kí hiệu z1; z2 là hai nghiệm của phương trình z2 + z + 1 = 0. Tính P = z12 + z22+ z1z2.
Trong không gian Oxyz, gọi m, n là hai giá trị thực thỏa mãn giao tuyến của hai mặt phẳng (Pm): mx + 2y + nz + 1 = 0 và (Qm): x - my + nz + 2 = 0 cùng vuông góc với mặt phẳng (a): 4x - y - 6z + 3 = 0. Khi đó ta có