Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z – 1 = 0. Mặt cầu có tâm thuộc tia Ox, bán kính bằng 2 và tiếp xúc với (P) có phương trình
A. (x – 5)2 + y2 + z2 = 4;
B. (x + 5)2 + y2 + z2 = 4;
C. (x – 7)2 + y2 + z2 = 4;
Đáp án đúng là: C
Gọi (S) là phương trình mặt cầu cần tìm có tâm thuộc tia Ox nên I(a; 0; 0) (a ≥ 0).
(S) tiếp xúc với mặt phẳng (P): x – 2y + 2z – 1 = 0 nên khoảng cách d(I; (P)) = R
Û = 2
Û = 2
Û |a – 1| = 6
Û
Do a ≥ 0 nên ta lấy a = 7
Vậy (S) : (x – 7)2 + y2 + z2 = 4.
Có bao nhiêu giá trị nguyên của tham số m để phương trình z2 – 2mz + 6m – 5 = 0 có hai nghiệm phức phân biệt z1, z2 thỏa mãn |z1| = |z2|?
Trong không gian Oxyz, cho mặt phẳng (P) : x − 2y + 1 = 0. Một vectơ pháp tuyến của (P) có tọa độ là
Trong không gian Oxyz, cho hai điểm A(10; 6; −2), B(5; 10; −9) và mặt phẳng (α): 2x + 2y + z – 12 = 0. Điểm M thay đổi thuộc mặt phẳng (α) sao cho hai đường thẳng MA và MB luôn tạo với (α) các góc bằng nhau. Biết rằng điểm M luôn thuộc một đường tròn cố định. Hoành độ của tâm đường tròn đó bằng
Biết rằng = aln2 + bln3 + cln5, với a, b, c ∈ ℚ. Giá trị a + b + c bằng
Cho các số phức z1 = 3 + 2i; z2 = 3 – 2i. Phương trình bậc hai có nghiệm z1, z2 là
Cho hàm số f(x) thỏa mãn f(x) + f '(x) = e−x, ∀ x ∈ ℝ và f(0) = 2. Tất cả các nguyên hàm của f(x)e2x là
Trong không gian Oxyz, cho ba đường thẳng d: ∆1: và ∆2: . Đường thẳng ∆ vuông góc với d đồng thời cắt ∆1, ∆2 lần lượt tại H, K sao cho HK nhỏ nhất. Biết rằng ∆ có một vectơ chỉ phương (h; k; 1). Giá trị h – k bằng
Cho hàm số f(x) liên tục trên đoạn [1; 3]. Biết F(x) là nguyên hàm của f(x) trên đoạn [1; 3] thỏa mãn F(1) = −2 và F(3) = 5. Khi đó bằng
Có bao nhiêu số phức z thỏa mãn |z – 1|2 + |z − |i + (z + )i2023 = 1?