Hướng dẫn giải
Đặt f(x) = 2x4 – 3x3 – 5, f(x) là hàm đa thức nên liên tục trên ℝ.
Do đó f(x) liên tục trên đoạn [1;2]
f(1) = −6, f(2) = 3 Þ f(1).f(2) = −18 < 0
Þ phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng [1; 2].
Vậy phương trình đã cho có ít nhất một nghiệm.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC) và SA = a. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng:
Đường thẳng y = ax + b tiếp xúc với đồ thị hàm số y = x3 – 3x – 1 tại điểm có hoành độ bằng 2, giá trị của a + b bằng:
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{2{x^2} - 5x + 1}}{{1 + 3x - {x^2}}}\) bằng:
\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 4x + 7} - 2x} \right)\) bằng:
Phương trình tiếp tuyến của đồ thị hàm số y = x4 – 3x2 + 1 tại điểm M(1;−1) là:
\(\mathop {\lim }\limits_{x \to 2} \left( { - 3{x^2} + 6x + 1} \right)\) bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và có SA = SC, SB = SD. Trong các khẳng định sau, khẳng định nào đúng?