Thứ năm, 19/12/2024
IMG-LOGO

Câu hỏi:

17/07/2024 79

Tứ giác \[ABCD\] ngoại tiếp đường tròn \[\left( O \right)\], đồng thời nội tiếp một đường tròn khác. \[AB = 14{\rm{ cm}},BC = 18{\rm{ cm}},CD = 26{\rm{ cm}}\]. Gọi \[H\] là tiếp điểm của \[CD\] và đường tròn \[\left( O \right)\]. Tính các độ dài \[HC,HD\].

Trả lời:

verified Giải bởi Vietjack

Tứ giác ABCD ngoại tiếp đường tròn (O), đồng thời nội tiếp một đường tròn khác (ảnh 1)

Gọi \[I,K,M\] là tiếp điểm của đường tròn \[\left( O \right)\] trên các cạnh \[BC,AB,AD\]\[r\] là bán kính đường tròn \[\left( O \right)\].

Đặt \[CH = CI = x,{\rm{ }}DH = DM = y,{\rm{ }}AM = AK = z,{\rm{ }}BI = BK = t\].

Do tứ giác \[ABCD\] ngoại tiếp đường tròn \[\left( O \right)\] nên:

            \[AB + CD = AD + BC \Rightarrow AD = AB + CD - BC = 14 + 26 - 18 = 22{\rm{ cm}}\].

Lại có tứ giác \[ABCD\] là tứ giác nội tiếp nên

            \[\widehat {ABC} + \widehat {ADC} = 180^\circ \Leftrightarrow 2\left( {\widehat {{B_1}} + \widehat {{D_1}}} \right) = 180^\circ \]

                                             \[ \Leftrightarrow \widehat {{B_1}} + \widehat {{D_1}} = 90^\circ \Rightarrow \widehat {{B_1}} = \widehat {HOD}\] (vì cùng phụ với góc \[\widehat {{D_1}}\]).

Ta có \[\Delta KBO \sim \Delta HOD\left( {{\rm{g}}{\rm{.g}}} \right) \Rightarrow \frac{{KB}}{{OH}} = \frac{{OK}}{{HD}} \Leftrightarrow \frac{t}{r} = \frac{r}{y} \Leftrightarrow {r^2} = yt\].

Tương tự \[{r^2} = xz\]. Do đó \[xz = yt\]. Suy ra \[\frac{x}{y} = \frac{t}{z} = \frac{{18 - x}}{{22 - y}} = \frac{{18}}{{22}}\].

Từ đó ta tính được \[11x = 9y\]. Suy ra \[x = 11,7\]\[y = 14,3\].

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( O \right)\] nội tiếp tam giác \[ABC\]. \[D,E,F\] lần lượt là các tiếp điểm \[AB,BC,CA\] với \[\left( O \right)\].

Tìm các hệ thức tương tự hệ thức ở bài trước.

Xem đáp án » 15/10/2022 142

Câu 2:

Cho tam giác \[ABC\] vuông tại \[A\]. Đường tròn \[\left( O \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[AB,AC\] lần lượt tại \[D,E\].

Tứ giác \[ADOE\] là hình gì? Vì sao?

Xem đáp án » 15/10/2022 110

Câu 3:

Cho tam giác \[ABC\] vuông tại \[A\]. Đường tròn \[\left( O \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[AB,AC\] lần lượt tại \[D,E\].

Tính bán kính của đường tròn \[\left( O \right)\] biết \[AB = 3{\rm{ cm}},AC = 4{\rm{ cm}}\].

Xem đáp án » 15/10/2022 108

Câu 4:

Hình thang vuông \[ABCD\left( {\widehat {A{\rm{ }}} = \widehat D = 90^\circ } \right)\] ngoại tiếp đường tròn tâm \[O\]. Biết \[OB = 10{\rm{ cm}}\], \[OC = 20{\rm{ cm}}\]. Tính diện tích hình thang \[ABCD\].

Xem đáp án » 15/10/2022 107

Câu 5:

Cho đường tròn tâm \[O\], các dây \[AB,CD\] vuông góc với nhau. Các tiếp tuyến với đường tròn tại \[A,B,C,D\] cắt nhau lần lượt tại \[E,F,G,H\]. Chứng minh rằng \[EFGH\] là tứ giác nội tiếp.

Xem đáp án » 15/10/2022 91

Câu 6:

Chứng minh định lí: “Nếu một tứ giác \[ABCD\] có tổng các cạnh đối bằng nhau \[AB + CD = BC + AD\] thì tứ giác đó ngoại tiếp được một đường tròn” bằng cách chứng minh các tia phân giác của bốn góc \[A,B,C,D\] cùng gặp nhau tại một điểm.

Xem đáp án » 15/10/2022 87

Câu 7:

Cho đường tròn \[\left( O \right)\] nội tiếp tam giác \[ABC\]. \[D,E,F\] lần lượt là các tiếp điểm \[AB,BC,CA\] với \[\left( O \right)\].

Chứng minh rằng \[2AD = AB + AC - BC\].

Xem đáp án » 15/10/2022 85

Câu hỏi mới nhất

Xem thêm »
Xem thêm »