Hàm số y=2−sinxcos5π2−2x là
D. hàm số lẻ.
Đáp án C
Hàm số y=2−sinxcos5π2−2x có nghĩa .
Ta có f−x=2−sin−xcos5π2+2x=2−sinxcosπ−5π2−2x
=2−sinxcos−3π2−2x=2−sinxcos−3π2−2x+4π=2−sinxcos5π2−2x=fx.
Vậy hàm số y=2−sinxcos5π2−2x là hàm số chẵn.
Hàm số nào là hàm số lẻ trong các hàm số sau?
Hàm số y=2sinx−4tanx5+cosx là
Xét tính chẵn – lẻ của hàm số y=fx=sin5x+2017π2.
Hàm số y=1+2x2−cos3x là
Xét hai mệnh đề
(I) Hàm số là hàm số lẻ.
(II) Hàm số là hàm số lẻ.
Mệnh đề nào sai?
Cho hai hàm số fx=cos2x1+sin23x và gx=sin2x−cos3x2+tan2x .
Mệnh đề nào sau đây đúng?
Xét tính chẵn – lẻ của hàm số y=sinx2−4 .
Mệnh đề nào sau đây là mệnh đề đúng?
Xét tính chẵn – lẻ của hàm số y=sin20182x+cos2019x .
Xét tính chẵn – lẻ của hàm số y=fx=sin34x+9π+cot11x−2018π.
Cho hình chóp $S.ABC$, gọi $M,\,\,P$ và $I$ lần lượt là trung điểm của $AB,\,\,SC$ và $SB$. Mặt phẳng $(\alpha )$ qua $MP$ và song song với $AC$ và cắt các cạnh $SA,\,\,BC$ tại $N,\,\,Q.$
a) Chứng minh đường thẳng $BC$ song sòng với mặt phẳng $(IMP)$.
b) Xác định thiết diện của $(\alpha )$ và hình chóp. Thiết diện này là hình gì?
c) Tìm giao điểm của đường thẳng $CN$ và mặt phẳng $(SMQ)$.
Người ta trồng $3\,\,003$ cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây. Hỏi có tất cả bao nhiêu cây?
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu $h\,{\text{(m)}}$ của mực nước trong kênh tính theo thời gian $t$ (giờ) trong một ngày $\left( {0 \leqslant t < 24} \right)$ cho bởi công thức \[h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12.\] Tìm $t$ để độ sâu của mực nước là $9\,\,{\text{m}}$ (làm tròn đến chữ số thập phân thứ hai).
Cho hình chóp $S.ABCD$ có đáy là hình thang với các cạnh đáy là $AB$ và $CD$. Gọi $I,\,\,J$ lần lượt là trung điểm của $AD$ và $BC$; $G$ là trọng tâm của tam giác $SAB.$ Giao tuyến của $(SAB)$ và $(IJG)$ là
Tìm khẳng định đúng trong các khẳng định sau.
Cho hình chóp $S.ABC$. Gọi $L,\,\,M,\,\,N$ lần lượt các điểm trên các cạnh $SA,\,\,SB$ và $AC$ sao cho $LM$ không song song với $AB,\,\,LN$ không song song với $SC$. Mặt phẳng $(LMN)$ cắt các cạnh $AB,\,\,BC,\,\,SC$ lần lượt tại $K,\,\,I,\,\,J$. Ba điểm nào sau đây thẳng hàng?
Cho tứ diện $ABCD$. Gọi $H,\,\,K$ lần lượt là trung điểm các cạnh $AB,\,\,BC.$ Trên đường thẳng $CD$ lấy điểm $M$ nằm ngoài đoạn $CD$. Thiết diện của tứ diện với mặt phẳng $(HKM)$ là
Mệnh đề nào đúng trong các mệnh đề sau?