A. không tồn tại
B. m =1
C. m=5
D. m = 112
Ta có limx→1+fx=limx→1+1−7x2+2=−2limx→1−fx=limx→1−m−3=m−3f1=2m−13
Để tồn tại limx→1fx thì limx→1+fx=limx→1−fx=f1⇔−2=m−3=2m−13.
Vậy không tồn tại m.
Tìm limx→−3+x+x+12x+32
Giá trị đúng của limx→3x−3x−3 bằng
Tìm các giá trị thực của tham số m để hàm số fx=x+m khi x<0x2+1 khi x≥0 có giới hạn tại x=0.
Tìm limx→−∞2x2+1+x
Tìm giới hạn L=limx→2−1x−2−1x2−4
Giới hạn A=limx→+∞x2−x+1−2x kết quả bằng
Tính giới hạn limx→2x2−3x+2x−2
Tìm giới hạn limx→0+2x+xx−x
Tìm giới hạn limx→3−x−35x−1 .
Cho hàm số
fx=5x4−6x2−x khi x≥1−x3+3x khi x<1 Tính giới hạn
K=limx→1fx
Kết quả limx→0−1x2−2x3 là
Giới hạn B=limx→−∞x4x2+1−x bằng
Tìm limx→+∞x2−4x3−x
Cho hình chóp $S.ABC$, gọi $M,\,\,P$ và $I$ lần lượt là trung điểm của $AB,\,\,SC$ và $SB$. Mặt phẳng $(\alpha )$ qua $MP$ và song song với $AC$ và cắt các cạnh $SA,\,\,BC$ tại $N,\,\,Q.$
a) Chứng minh đường thẳng $BC$ song sòng với mặt phẳng $(IMP)$.
b) Xác định thiết diện của $(\alpha )$ và hình chóp. Thiết diện này là hình gì?
c) Tìm giao điểm của đường thẳng $CN$ và mặt phẳng $(SMQ)$.
Người ta trồng $3\,\,003$ cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây. Hỏi có tất cả bao nhiêu cây?
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu $h\,{\text{(m)}}$ của mực nước trong kênh tính theo thời gian $t$ (giờ) trong một ngày $\left( {0 \leqslant t < 24} \right)$ cho bởi công thức \[h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12.\] Tìm $t$ để độ sâu của mực nước là $9\,\,{\text{m}}$ (làm tròn đến chữ số thập phân thứ hai).
Cho hình chóp $S.ABCD$ có đáy là hình thang với các cạnh đáy là $AB$ và $CD$. Gọi $I,\,\,J$ lần lượt là trung điểm của $AD$ và $BC$; $G$ là trọng tâm của tam giác $SAB.$ Giao tuyến của $(SAB)$ và $(IJG)$ là
Tìm khẳng định đúng trong các khẳng định sau.
Cho hình chóp $S.ABC$. Gọi $L,\,\,M,\,\,N$ lần lượt các điểm trên các cạnh $SA,\,\,SB$ và $AC$ sao cho $LM$ không song song với $AB,\,\,LN$ không song song với $SC$. Mặt phẳng $(LMN)$ cắt các cạnh $AB,\,\,BC,\,\,SC$ lần lượt tại $K,\,\,I,\,\,J$. Ba điểm nào sau đây thẳng hàng?
Cho tứ diện $ABCD$. Gọi $H,\,\,K$ lần lượt là trung điểm các cạnh $AB,\,\,BC.$ Trên đường thẳng $CD$ lấy điểm $M$ nằm ngoài đoạn $CD$. Thiết diện của tứ diện với mặt phẳng $(HKM)$ là
Mệnh đề nào đúng trong các mệnh đề sau?