Một trường tổ chức cho học sinh đi tham quan bằng ôtô. Nếu xếp 35 hay 40 học sinh lên một ô tô thì đều thấy thiếu mất 5 ghế ngồi. Tính số học sinh đi tam quan biết số lượng học sinh đó trong khoảng từ 800 đến 900 em.
Trả lời:
Gọi số học sinh đi thăm quan là \[x\left( {x \in N*;800 \le x \le 900} \right)\] (học sinh)
Nếu xếp 35 hay 40 học sinh lên một ô tô thì đều thấy thiếu mất 5 ghế ngồi nghĩa là thừa ra 5 học sinh nên ta có
\[\left( {x - 5} \right) \vdots 35;\left( {x - 5} \right) \vdots 40\] suy ra \[\left( {x - 5} \right) \in BC\left( {35;40} \right)\]
Ta có:
35 = 5.7; 40 = 23.5 nên BCNN(35; 40) = 23.5.7 = 280.
Suy ra \[\left( {x - 5} \right) \in BC\left( {35;40} \right) = B\left( {280} \right)\]={280; 560; 840; 1120;...}
mà 800 ≤ x ≤9 00 nên x − 5 = 840 hay x = 845.
Vậy số học sinh đi thăm quan là 845 học sinh.
Đáp án cần chọn là: A
Chị Hòa có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông thì đều vừa hết. Hỏi chị Hòa có bao nhiêu bông sen? Biết rằng chị Hòa có khoảng từ 200 đến 300 bông.
Tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n chia 8 dư 7, chia 31 dư 28.
Lịch xuất bến của một số xe buýt tại bến xe Mỹ Đình (Hà Nội) được ghi ở bảng bên. Giả sử các xe buýt xuất bến cùng lúc vào 10 giờ 35 phút. Hỏi vào sau bao lâu thì cả 3 xe xuất bến cùng một lúc lần nữa (kể từ lần đầu tiên)?
Một số tự nhiên a khi chia cho 7 dư 4; chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
Tìm hai số tự nhiên a, b(a < b). Biết a + b = 20, BCNN(a, b) = 15
Cho a; b có BCNN(a;b)=630;ƯCLN(a;b)=18. Có bao nhiêu cặp số a; b thỏa mãn?
Có bao nhiêu số có ba chữ số là bội chung của a và b, biết rằng
BCNN(a, b) = 300.
Thực hiện các phép tính sau: \[\frac{3}{8} + \frac{5}{{24}}\]. Với kết quả là phân số tối giản.
Cho tập hợp X là ước của 35 và lớn hơn 5. Cho tập Y là bội của 8 và nhỏ hơn 50. Gọi M là giao của 2 tập hợp X và Y, tập hợp M có bao nhiêu phần tử?
Giao của tập của hai tập hợp A = {toán, văn, thể dục, ca nhạc} và
B = {mỹ thuật, toán, văn, giáo dục công dân}.
Tìm một số tự nhiên biết tích của ước số lớn nhất với bội số nhỏ nhất khác 0 của nó là 256.
Có bao nhiêu số tự nhiên x khác 0 thỏa mãn x ∈ BC(12; 15; 20) và x ≤ 100