Đạo hàm của hàm số\[y = \frac{{\cos 2x}}{{3x + 1}}\]là
Hướng dẫn giải:
Chọn A.
Ta có:\(y' = \frac{{{{\left( {\cos 2x} \right)}^\prime }\left( {3x + 1} \right) - {{\left( {3x + 1} \right)}^\prime }.cos2x}}{{{{\left( {3x + 1} \right)}^2}}} \Rightarrow y' = \frac{{ - 2\sin 2x\left( {3x + 1} \right) - 3\cos 2x}}{{{{\left( {3x + 1} \right)}^2}}}.\)
Tính đạo hàm của hàm số sau: \(y = 2{\sin ^2}4x - 3{\cos ^3}5x\).
Tính đạo hàm của hàm số sau \(y = \sqrt {{{\sin }^3}\left( {2x - \frac{\pi }{3}} \right) + 1} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Cho hàm số \(y = \cos \left( {\frac{{2\pi }}{3} + 2x} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là: