Tính đạo hàm của hàm số sau: \(y = {\left( {\frac{{\sin x}}{{1 + \cos x}}} \right)^3}\).
Hướng dẫn giải:
Chọn D.
Bước đầu tiên ta áp dụng công thức \({\left( {{u^\alpha }} \right)^/}\)với \(u = \frac{{\sin x}}{{1 + \cos x}}\)
\(y' = 3{\left( {\frac{{\sin x}}{{1 + \cos x}}} \right)^2}.{\left( {\frac{{\sin }}{{1 + \cos x}}} \right)^/}\)
Tính :\({\left( {\frac{{\sin x}}{{1 + \cos x}}} \right)^/} = \frac{{{{\left( {\sin x} \right)}^/}\left( {1 + \cos x} \right) - {{\left( {1 + \cos x} \right)}^/}.\sin x}}{{{{\left( {1 + \cos x} \right)}^2}}} = \frac{{\cos x\left( {1 + \cos x} \right) + {{\sin }^2}x}}{{{{\left( {1 + \cos x} \right)}^2}}}\)
\( = \frac{{\cos x + {{\cos }^2}x + {{\sin }^2}x}}{{{{\left( {1 + \cos x} \right)}^2}}} = \frac{1}{{1 + \cos x}}\).
Vậy \(y' = 3{\left( {\frac{{\sin x}}{{1 + \cos x}}} \right)^2}.\frac{1}{{1 + \cos x}} = \frac{{3{{\sin }^2}x}}{{{{\left( {1 + \cos x} \right)}^3}}}\).
Tính đạo hàm của hàm số sau: \(y = 2{\sin ^2}4x - 3{\cos ^3}5x\).
Tính đạo hàm của hàm số sau \(y = \sqrt {{{\sin }^3}\left( {2x - \frac{\pi }{3}} \right) + 1} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Cho hàm số \(y = \cos \left( {\frac{{2\pi }}{3} + 2x} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là: