Tính đạo hàm của hàm số sau: \(y = \frac{{\sin 2x + \cos 2x}}{{2\sin 2x - \cos 2x}}.\)
Hướng dẫn giải:
Chọn D.
\(y' = \frac{{{{\left( {\sin 2x + \cos 2x} \right)}^/}.\left( {2\sin 2x - \cos 2x} \right) - {{\left( {2\sin 2x - \cos 2x} \right)}^/}.\left( {\sin 2x + \cos 2x} \right)}}{{{{\left( {2\sin 2x - \cos 2x} \right)}^2}}}\)
\(y' = \frac{{\left( {2\cos 2x - 2\sin 2x} \right)\left( {2\sin 2x - \cos 2x} \right) - \left( {4\cos 2x + 2\sin 2x} \right)\left( {\sin 2x + \cos 2x} \right)}}{{{{\left( {2\sin 2x - \cos 2x} \right)}^2}}}\)
\(y' = \frac{{ - 6{{\cos }^2}2x - 6{{\sin }^2}2x}}{{{{\left( {2\sin 2x - \cos 2x} \right)}^2}}} = \frac{{ - 6}}{{{{\left( {2\sin 2x - \cos 2x} \right)}^2}}}\).
Tính đạo hàm của hàm số sau: \(y = 2{\sin ^2}4x - 3{\cos ^3}5x\).
Tính đạo hàm của hàm số sau \(y = \sqrt {{{\sin }^3}\left( {2x - \frac{\pi }{3}} \right) + 1} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Cho hàm số \(y = \cos \left( {\frac{{2\pi }}{3} + 2x} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là: