Tính đạo hàm của hàm số sau: \(y = {\sin ^2}\left( {\cos \left( {{{\tan }^4}3x} \right)} \right)\)
Hướng dẫn giải:
Chọn D.
Đầu tiên áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)\)
\(y' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).{\left[ {\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)} \right]^/}\)
Sau đó áp dụng \({\left( {\sin u} \right)^/},\) với \(u = \cos \left( {{{\tan }^4}3x} \right)\)
\(y' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).\cos \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).{\left( {\cos \left( {{{\tan }^4}3x} \right)} \right)^/}\)
Áp dụng \({\left( {\cos u} \right)^/},\) với \(u = {\tan ^4}3x.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).{\left( {{{\tan }^4}3x} \right)^/}.\)
Áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \tan 3x\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.{\left( {\tan 3x} \right)^/}.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^2}3x} \right).{\left( {3x} \right)^/}.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^3}3x} \right).3\).
Tính đạo hàm của hàm số sau: \(y = 2{\sin ^2}4x - 3{\cos ^3}5x\).
Tính đạo hàm của hàm số sau \(y = \sqrt {{{\sin }^3}\left( {2x - \frac{\pi }{3}} \right) + 1} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Cho hàm số \(y = \cos \left( {\frac{{2\pi }}{3} + 2x} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)