Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Hướng dẫn giải:
Chọn D.
Ta có: \({\left( {x\tan 2x} \right)^'} = \tan 2x + 2x\left( {1 + {{\tan }^2}2x} \right)\)
\({\left( {\frac{{x + 1}}{{\cot x}}} \right)^'} = {\left[ {(x + 1)\tan x} \right]^'} = \tan x + (x + 1)({\tan ^2} + 1)\)
Nên \(y' = \tan 2x + 2x\left( {1 + {{\tan }^2}2x} \right) + \tan x + (x + 1)({\tan ^2} + 1)\)
Tính đạo hàm của hàm số sau: \(y = 2{\sin ^2}4x - 3{\cos ^3}5x\).
Tính đạo hàm của hàm số sau \(y = \sqrt {{{\sin }^3}\left( {2x - \frac{\pi }{3}} \right) + 1} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Cho hàm số \(y = \cos \left( {\frac{{2\pi }}{3} + 2x} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)