Cho hàm số \[y = {\rm{si}}{{\rm{n}}^2}{\rm{2}}x\]. Tính \({y^{\left( 4 \right)}}\left( {\frac{\pi }{6}} \right)\) bằng:
Hướng dẫn giải:
Chọn C.
Vì: \(y' = 2{\rm{sin2}}x\left( {2{\rm{cos2}}x} \right) = 2{\rm{sin4}}x\); \(y'' = 8{\rm{cos4}}x\) ; \(y''' = - 32{\rm{sin4}}x\);
\({y^{\left( 4 \right)}} = - 128{\rm{cos4}}x\)\( \Rightarrow {y^{\left( 4 \right)}}\left( {\frac{\pi }{6}} \right) = 64\sqrt 3 \).Nếu \(f''\left( x \right) = \frac{{2\sin x}}{{{{\cos }^3}x}}\) thì \(f\left( x \right)\) bằng
Hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp \(5\) bằng :
Cho hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :
Mệnh đề nào đúng?
Hàm số \(y{\rm{ }} = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp 5 bằng:
Cho hàm số \(y = f\left( x \right) = - \frac{1}{x}\). Xét hai mệnh đề :
\(\left( I \right):y'' = f''\left( x \right) = \frac{2}{{{x^3}}}\). \(\left( {II} \right):y''' = f'''\left( x \right) = - \frac{6}{{{x^4}}}\).
Mệnh đề nào đúng?
Hàm số \[y = {\left( {{x^2} + {\rm{ }}1} \right)^3}\] có đạo hàm cấp ba là:
Hàm số \(y = f\left( x \right) = \cos \left( {2x - \frac{\pi }{3}} \right)\) . Phương trình \({f^{\left( 4 \right)}}\left( x \right) = - 8\) có nghiệm \(x \in \left[ {0;\frac{\pi }{2}} \right]\) là:
Hàm số \[y = {\left( {2x + 5} \right)^5}\] có đạo hàm cấp \(3\) bằng :
Hàm số \(y = \frac{{ - 2{x^2} + 3x}}{{1 - x}}\) có đạo hàm cấp \(2\) bằng :