Tính đạo hàm cấp n của hàm số \(y = \frac{{2x + 1}}{{{x^2} - 5x + 6}}\)
Hướng dẫn giải:
Chọn D.
Ta có: \(2x + 1 = 7(x - 2) - 5(x - 3)\); \({x^2} - 5x + 6 = (x - 2)(x - 3)\)
Suy ra \(y = \frac{7}{{x - 3}} - \frac{5}{{x - 2}}\).
Mà \({\left( {\frac{1}{{x - 2}}} \right)^{(n)}} = \frac{{{{( - 1)}^n}{{.1}^n}.n!}}{{{{(x - 2)}^{n + 1}}}} = \frac{{{{( - 1)}^n}.n!}}{{{{(x - 2)}^{n + 1}}}},{\left( {\frac{1}{{x - 2}}} \right)^{(n)}} = \frac{{{{( - 1)}^n}.n!}}{{{{(x - 3)}^{n + 1}}}}\)
Nên \({y^{(n)}} = \frac{{{{( - 1)}^n}.7.n!}}{{{{(x - 2)}^{n + 1}}}} - \frac{{{{( - 1)}^n}.5.n!}}{{{{(x - 3)}^{n + 1}}}}\).
Nếu \(f''\left( x \right) = \frac{{2\sin x}}{{{{\cos }^3}x}}\) thì \(f\left( x \right)\) bằng
Hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp \(5\) bằng :
Cho hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :
Mệnh đề nào đúng?
Hàm số \(y{\rm{ }} = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp 5 bằng:
Cho hàm số \(y = f\left( x \right) = - \frac{1}{x}\). Xét hai mệnh đề :
\(\left( I \right):y'' = f''\left( x \right) = \frac{2}{{{x^3}}}\). \(\left( {II} \right):y''' = f'''\left( x \right) = - \frac{6}{{{x^4}}}\).
Mệnh đề nào đúng?
Hàm số \[y = {\left( {{x^2} + {\rm{ }}1} \right)^3}\] có đạo hàm cấp ba là:
Hàm số \(y = f\left( x \right) = \cos \left( {2x - \frac{\pi }{3}} \right)\) . Phương trình \({f^{\left( 4 \right)}}\left( x \right) = - 8\) có nghiệm \(x \in \left[ {0;\frac{\pi }{2}} \right]\) là:
Hàm số \[y = {\left( {2x + 5} \right)^5}\] có đạo hàm cấp \(3\) bằng :
Hàm số \(y = \frac{{ - 2{x^2} + 3x}}{{1 - x}}\) có đạo hàm cấp \(2\) bằng :