Tính đạo hàm của hàm số sau: \(y = {\left( {{x^7} + x} \right)^2}\).
Hướng dẫn giải:
Chọn D
Sử dụng công thức \({\left( {{u^\alpha }} \right)^/} = \alpha .{u^{\alpha - 1}}.u'\) (với \(u = {x^7} + x\) )
\(y' = 2\left( {{x^7} + x} \right).{\left( {{x^7} + x} \right)^/} = 2\left( {{x^7} + x} \right)\left( {7{x^6} + 1} \right)\)
Tính đạo hàm của hàm số sau: \(y = {\left( {1 - 2{x^2}} \right)^3}.\)
Tính đạo hàm của hàm số \(y = {x^2}\left( {2x + 1} \right)\left( {5x - 3} \right)\)
Tính đạo hàm của hàm số sau: \(y = {\left( {x - {x^2}} \right)^{32}}\).
Cho hàm số \[y = f\left( x \right) = \left( {1 - 2{x^2}} \right)\sqrt {1 + 2{x^2}} \]. Ta xét hai mệnh đề sau:
(I) \[f'\left( x \right) = \frac{{ - 2x\left( {1 + 6{x^2}} \right)}}{{\sqrt {1 + 2{x^2}} }}\] (II) \[f\left( x \right).f'\left( x \right) = 2x\left( {12{x^4} - 4{x^2} - 1} \right)\]
Mệnh đề nào đúng?
Cho hàm số \[f\left( x \right)\]xác định trên \[D = \left[ {0; + \infty } \right)\] cho bởi \[f\left( x \right) = x\sqrt x \] có đạo hàm là:
Tính đạo hàm của hàm số sau: \(y = \frac{{a{x^2} + bx + c}}{{a'x + b'}},{\rm{ }}aa' \ne 0\).
Hàm số \(y = \frac{{{{\left( {x - 2} \right)}^2}}}{{1 - x}}\) có đạo hàm là:
Đạo hàm của hàm số\[y = \frac{1}{2}{x^6} - \frac{3}{x} + 2\sqrt x \] là:
Cho hàm số\(y = \frac{{ - 2{x^2} + x - 7}}{{{x^2} + 3}}\). Đạo hàm\(y'\)của hàm số là:
Tính đạo hàm của hàm số \(y = \sqrt {\frac{{{x^3}}}{{x - 1}}} \) (Áp dụng căn bặc hai của u đạo hàm).
Tìm \(a,b\) để các hàm số sau có đạo hàm trên \(\mathbb{R}\). \(f(x) = \left\{ \begin{array}{l}{x^2} - x + 1{\rm{ }}\,\,\,\,{\rm{khi }}x \le 1\\ - {x^2} + ax + b{\rm{ khi }}x > 1\end{array} \right.\)