Tìm \(a,b\) để các hàm số sau có đạo hàm trên \(\mathbb{R}\). \(f(x) = \left\{ \begin{array}{l}{x^2} - x + 1{\rm{ }}\,\,\,\,{\rm{khi }}x \le 1\\ - {x^2} + ax + b{\rm{ khi }}x > 1\end{array} \right.\)
Hướng dẫn giải::
Chọn D
Với \(x \ne 1\) thì hàm số luôn có đạo hàm
Do đó hàm số có đạo hàm trên \(\mathbb{R}\)\( \Leftrightarrow \) hàm số có đạo hàm tại \(x = 1\).
Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 1;{\rm{ }}\mathop {\lim }\limits_{x \to {1^ + }} f(x) = a + b - 1\)
Hàm số liên tục trên \(\mathbb{R}\)\( \Leftrightarrow a + b - 1 = 1 \Leftrightarrow a + b = 2\)
Khi đó: \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f(x) - f(1)}}{{x - 1}} = 1;{\rm{ }}\)
\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - {x^2} + ax + 1 - a}}{{x - 1}} = a - 2\)
Nên hàm số có đạo hàm trên \(\mathbb{R}\) thì \(\left\{ \begin{array}{l}a + b = 2\\a - 2 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 1\end{array} \right.\).
Tính đạo hàm của hàm số sau: \(y = {\left( {1 - 2{x^2}} \right)^3}.\)
Tính đạo hàm của hàm số \(y = {x^2}\left( {2x + 1} \right)\left( {5x - 3} \right)\)
Tính đạo hàm của hàm số sau: \(y = {\left( {x - {x^2}} \right)^{32}}\).
Cho hàm số \[f\left( x \right)\]xác định trên \[D = \left[ {0; + \infty } \right)\] cho bởi \[f\left( x \right) = x\sqrt x \] có đạo hàm là:
Tính đạo hàm của hàm số sau: \(y = \frac{{a{x^2} + bx + c}}{{a'x + b'}},{\rm{ }}aa' \ne 0\).
Cho hàm số \[y = f\left( x \right) = \left( {1 - 2{x^2}} \right)\sqrt {1 + 2{x^2}} \]. Ta xét hai mệnh đề sau:
(I) \[f'\left( x \right) = \frac{{ - 2x\left( {1 + 6{x^2}} \right)}}{{\sqrt {1 + 2{x^2}} }}\] (II) \[f\left( x \right).f'\left( x \right) = 2x\left( {12{x^4} - 4{x^2} - 1} \right)\]
Mệnh đề nào đúng?
Tính đạo hàm của hàm số sau: \(y = {\left( {{x^7} + x} \right)^2}\).
Hàm số \(y = \frac{{{{\left( {x - 2} \right)}^2}}}{{1 - x}}\) có đạo hàm là:
Đạo hàm của hàm số\[y = \frac{1}{2}{x^6} - \frac{3}{x} + 2\sqrt x \] là:
Cho hàm số\(y = \frac{{ - 2{x^2} + x - 7}}{{{x^2} + 3}}\). Đạo hàm\(y'\)của hàm số là:
Tính đạo hàm của hàm số \(y = \sqrt {\frac{{{x^3}}}{{x - 1}}} \) (Áp dụng căn bặc hai của u đạo hàm).