Đạo hàm của hàm số \(y = \frac{{\sqrt x }}{{1 - 2x}}\) bằng biểu thức nào sau đây?
Hướng dẫn giải::
Chọn D
Ta có
\(y' = \frac{{{{\left( {\sqrt x } \right)}^\prime }.\left( {1 - 2x} \right) - {{\left( {1 - 2x} \right)}^\prime }.\sqrt x }}{{{{\left( {1 - 2x} \right)}^2}}} = \frac{{\frac{1}{{2\sqrt x }}.\left( {1 - 2x} \right) + 2\sqrt x }}{{{{\left( {1 - 2x} \right)}^2}}}\)
\[ = \frac{{\frac{{1 - 2x + 4x}}{{2\sqrt x }}}}{{{{\left( {1 - 2x} \right)}^2}}} = \frac{{1 + 2x}}{{2\sqrt x {{\left( {1 - 2x} \right)}^2}}}\].
Tính đạo hàm của hàm số sau: \(y = {\left( {1 - 2{x^2}} \right)^3}.\)
Tính đạo hàm của hàm số \(y = {x^2}\left( {2x + 1} \right)\left( {5x - 3} \right)\)
Tính đạo hàm của hàm số sau: \(y = {\left( {x - {x^2}} \right)^{32}}\).
Cho hàm số \[y = f\left( x \right) = \left( {1 - 2{x^2}} \right)\sqrt {1 + 2{x^2}} \]. Ta xét hai mệnh đề sau:
(I) \[f'\left( x \right) = \frac{{ - 2x\left( {1 + 6{x^2}} \right)}}{{\sqrt {1 + 2{x^2}} }}\] (II) \[f\left( x \right).f'\left( x \right) = 2x\left( {12{x^4} - 4{x^2} - 1} \right)\]
Mệnh đề nào đúng?
Cho hàm số \[f\left( x \right)\]xác định trên \[D = \left[ {0; + \infty } \right)\] cho bởi \[f\left( x \right) = x\sqrt x \] có đạo hàm là:
Tính đạo hàm của hàm số sau: \(y = {\left( {{x^7} + x} \right)^2}\).
Tính đạo hàm của hàm số sau: \(y = \frac{{a{x^2} + bx + c}}{{a'x + b'}},{\rm{ }}aa' \ne 0\).
Hàm số \(y = \frac{{{{\left( {x - 2} \right)}^2}}}{{1 - x}}\) có đạo hàm là:
Đạo hàm của hàm số\[y = \frac{1}{2}{x^6} - \frac{3}{x} + 2\sqrt x \] là:
Cho hàm số\(y = \frac{{ - 2{x^2} + x - 7}}{{{x^2} + 3}}\). Đạo hàm\(y'\)của hàm số là:
Tính đạo hàm của hàm số \(y = \sqrt {\frac{{{x^3}}}{{x - 1}}} \) (Áp dụng căn bặc hai của u đạo hàm).