Hướng dẫn giải:
Đáp án B
Đầu tiên sử dụng công thức \({\left( {{u^\alpha }} \right)^/}\) với \(u = \frac{{1 - \sqrt x }}{{1 + \sqrt x }}\)
\(y' = 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right).{\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)^/}\)
Tính \({\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)^/} = \frac{{{{\left( {1 - \sqrt x } \right)}^/}\left( {1 + \sqrt x } \right) - {{\left( {1 + \sqrt x } \right)}^/}\left( {1 - \sqrt x } \right)}}{{{{\left( {1 + \sqrt x } \right)}^2}}}\)
\( = \frac{{\frac{{ - 1}}{{2\sqrt x }}\left( {1 + \sqrt x } \right) - \frac{1}{{2\sqrt x }}\left( {1 - x} \right)}}{{{{\left( {1 + \sqrt x } \right)}^2}}} = \frac{{ - 1}}{{\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}\)
Vậy \(y' = 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right).\frac{{ - 1}}{{\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}\).
Tính đạo hàm của hàm số sau: \(y = {\left( {1 - 2{x^2}} \right)^3}.\)
Tính đạo hàm của hàm số \(y = {x^2}\left( {2x + 1} \right)\left( {5x - 3} \right)\)
Tính đạo hàm của hàm số sau: \(y = {\left( {x - {x^2}} \right)^{32}}\).
Cho hàm số \[f\left( x \right)\]xác định trên \[D = \left[ {0; + \infty } \right)\] cho bởi \[f\left( x \right) = x\sqrt x \] có đạo hàm là:
Cho hàm số \[y = f\left( x \right) = \left( {1 - 2{x^2}} \right)\sqrt {1 + 2{x^2}} \]. Ta xét hai mệnh đề sau:
(I) \[f'\left( x \right) = \frac{{ - 2x\left( {1 + 6{x^2}} \right)}}{{\sqrt {1 + 2{x^2}} }}\] (II) \[f\left( x \right).f'\left( x \right) = 2x\left( {12{x^4} - 4{x^2} - 1} \right)\]
Mệnh đề nào đúng?
Tính đạo hàm của hàm số sau: \(y = \frac{{a{x^2} + bx + c}}{{a'x + b'}},{\rm{ }}aa' \ne 0\).
Tính đạo hàm của hàm số sau: \(y = {\left( {{x^7} + x} \right)^2}\).
Hàm số \(y = \frac{{{{\left( {x - 2} \right)}^2}}}{{1 - x}}\) có đạo hàm là:
Đạo hàm của hàm số\[y = \frac{1}{2}{x^6} - \frac{3}{x} + 2\sqrt x \] là:
Cho hàm số\(y = \frac{{ - 2{x^2} + x - 7}}{{{x^2} + 3}}\). Đạo hàm\(y'\)của hàm số là:
Tính đạo hàm của hàm số \(y = \sqrt {\frac{{{x^3}}}{{x - 1}}} \) (Áp dụng căn bặc hai của u đạo hàm).