d) Gọi I là trung điểm của BC và K là giao điểm của BC và MN. Chứng minh rằng AK.AI=AB.AC
d. Ta có I là trung điểm BC
Tứ giác OIMA có cùng nhìn cạnh OA => OIMA là tứ giác nội tiếp, Kết hợp câu a suy ra OIMAN nội tiếp đường tròn
Mà (tính chất tiếp tuyến)
Xét và có: chung;
mà
Từ điểm A ở ngoài đường tròn (O;R), kẻ hai tiếp tuyến AM, AN (M và N là các tiếp điểm). Một đường thẳng qua A nhưng không đi qua điểm O, cắt đường tròn (O) nói trên tại hai điểm B và C (B nằm giữa A và C)
a) Chứng minh tứ giác AMON nội tiếp đường tròn.
c) Gọi là hai nghiệm của phương trình (1).
Tìm giá trị nhỏ nhất của biểu thức và giá trị m tương ứng
Trong mặt phẳng tọa độ, cho đồ thị (P): . Cho đường thẳng (d) có phương trình: y = mx + 2m. Tìm m để đường thẳng (d) tiếp xúc với parabol (P) nói trên.
b) Tính độ dài cung MBN theo R của đường tròn (O;R) khi số đo MON = 1200